首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18087篇
  免费   189篇
  国内免费   203篇
安全科学   584篇
废物处理   735篇
环保管理   2333篇
综合类   3683篇
基础理论   4279篇
环境理论   9篇
污染及防治   4454篇
评价与监测   1387篇
社会与环境   915篇
灾害及防治   100篇
  2022年   160篇
  2021年   147篇
  2020年   133篇
  2019年   164篇
  2018年   273篇
  2017年   316篇
  2016年   434篇
  2015年   330篇
  2014年   522篇
  2013年   1358篇
  2012年   613篇
  2011年   798篇
  2010年   641篇
  2009年   712篇
  2008年   755篇
  2007年   788篇
  2006年   716篇
  2005年   661篇
  2004年   593篇
  2003年   576篇
  2002年   561篇
  2001年   687篇
  2000年   439篇
  1999年   322篇
  1998年   190篇
  1997年   222篇
  1996年   214篇
  1995年   241篇
  1994年   232篇
  1993年   177篇
  1992年   200篇
  1991年   202篇
  1990年   195篇
  1989年   168篇
  1988年   175篇
  1987年   112篇
  1986年   145篇
  1985年   149篇
  1984年   138篇
  1983年   142篇
  1982年   141篇
  1981年   151篇
  1980年   105篇
  1979年   117篇
  1978年   114篇
  1976年   97篇
  1974年   107篇
  1972年   91篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
61.
Antifouling biocides are used to prevent the settlement and growth of organisms on submerged surfaces. Irgarol 1051 is currently among the most widely used organic booster biocides worldwide. This study reports Irgarol 1051, its major metabolite M1 (aka GS26575), and diuron concentrations found in selected California marinas. Seasonal water samples (n = 46) were collected during the summer and fall of 2006 from eleven marinas throughout Southern and Northern California. The samples were extracted using solid phase extraction and analysed utilizing liquid chromatography tandem mass spectrometry (LC-MS-MS) with electrospray ionization. All three compounds were detected in all samples, representing a 100% frequency of occurrence and indicating widespread use around the sampled marinas. Irgarol concentrations ranged from 12 to 712 ng L(-1) (average 102 ng L(-1)), M1 concentrations were 1-217 ng L(-1) (average 31 ng L(-1)), and diuron concentrations were 5-27 ng L(-1) (average 13 ng L(-1)). In general, concentrations of both Irgarol (15-712 ng L(-1)) and M1 (1-217 ng L(-1)) were greater in samples collected during the summer, corresponding to the peak of the boating season. The detected diuron concentrations in most cases were greater for fall samples (7-27 ng L(-1)), and probably represented a combination of non-agricultural (rights of way) and agricultural applications of diuron in California. The maximum Irgarol concentration detected in California marinas in summer 2006 (712 ng L(-1)) was five times greater than the Irgarol concentration suggested as the plant toxicity benchmark (136 ng L(-1)). Twenty three percent of samples from California marinas in this study exceeded this benchmark, suggesting that detected Irgarol concentrations may be high enough to cause changes in phytoplankton communities in the sampled marinas.  相似文献   
62.
This study aims in linking the biophysical and socioeconomic data base layers with the technical coefficients or simulation models for agri-production estimates and land use planning under normal and extreme climatic events, and exploring the resource and inputs management options in village Shikohpur, Gurgaon district located in the northwest part of India. The socioeconomic profile of Shikohpur is highly skewed with mostly small and marginal farmers. Though the areas under wheat in Shikohpur are increasing, the productivity is declining or remaining stagnant over the years. Most of the area during kharif season (June-September) remains fallow. Pearl millet based cropping systems (pearl millet-mustard and pearl millet-wheat) are predominant. Soils are mostly loamy sand to sandy loam with average of 70-80% sand content. Organic C content in soil is less than 0.3%, due to high prevailing temperature with little rainfall and also intensive agriculture followed in this region. Though the annual average seasonal rainfall in Gurgaon did not have much variation over the years, occurrence of extreme climate events has increased in the last two decades. The crop intensity is low and the water table is declining. Water and nitrogen production functions were developed for the important crops of the region, for their subsequent use in scheduling of the inputs. InfoCrop, WTGROWS and technical coefficients were used for crop planning and resource management under climate change and its variability, extreme events, limited resource availability and crop intensification. These will help in disseminating necessary agro-advisories to the farmers so that they will be able to manipulate the inputs and agronomic management practices for sustained agricultural production under normal as well as extreme climatic conditions.  相似文献   
63.
Environmental security is one of the fundamental requirements of our well being. However, it still remains a major global challenge. Therefore, in addition to reducing and/or eliminating the amounts of toxic discharges into the environment, there is need to develop techniques that can detect and monitor these environmental pollutants in a sensitive and selective manner to enable effective remediation. Because of their integrated nature, biosensors are ideal for environmental monitoring and detection as they can be portable and provide selective and sensitive rapid responses in real time. In this review we discuss the main concepts behind the development of biosensors that have most relevant applications in the field of environmental monitoring and detection. We also review and document recent trends and challenges in biosensor research and development particularly in the detection of species of environmental significance such as organophosphate nerve agents, heavy metals, organic contaminants, pathogenic microorganisms and their toxins. Special focus will be given to the trends that have the most promising applications in environmental security. We conclude by highlighting the directions towards which future biosensors research in environmental security sector might proceed.  相似文献   
64.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   
65.
In this study, the heterogeneous photocatalytic degradation of prometryn using TiO(2) as photocatalyst was investigated. The main objectives of the study were: (I) to evaluate the kinetics of the pesticide disappearance, (II) to compare the photocatalytic efficiency of two different types of TiO(2), (III) to examine the influence of various parameters such as initial concentration of pesticide or catalyst and presence of oxidants (H(2)O(2) and K(2)S(2)O(8)), (IV) to evaluate the degree of mineralization and (V) to assess the detoxification efficiency of the studied processes. The experiments were carried out in a 500 ml pyrex UV reactor equipped with a 125 W high-pressure mercury lamp surrounded by a pyrex filter blocking wavelengths below 290 nm. Prometryn concentration was determined using HPLC. It was found that the degradation of the pesticide follows the first order kinetics according to the Langmuir-Hinshelwood model. Parameters like the type and concentration of the catalyst affect the degradation rate. A synergistic effect was observed when an oxidant was added in the TiO(2) suspensions increasing the reaction rate of photodegradation. In order to examine the extent of pesticide mineralization, DOC measurements were carried out. After 6h of illumination, mineralization was achieved up to almost 70%. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fisheri, in order to compare the acute toxicity of prometryn and its photoproducts. The detoxification efficiency was found to be dependent on the studied system and it did not follow the rate of pesticide disappearance.  相似文献   
66.
Hung CL  Lau RK  Lam JC  Jefferson TA  Hung SK  Lam MH  Lam PK 《Chemosphere》2007,66(7):1175-1182
The potential health risks due to inorganic substances, mainly metals, was evaluated for the two resident marine mammals in Hong Kong, the Indo-Pacific Humpback Dolphin (Sousa chinensis) and the Finless Porpoise (Neophocaena phocaenoides). The stomachs from the carcasses of twelve stranded dolphins and fifteen stranded porpoises were collected and the contents examined. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V and Zn) were determined by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of risks of adverse effects was undertaken using two toxicity guideline values, namely the Reference Dose (RfD), commonly used in human health risk assessment, and the Toxicity Reference Value (TRV), based on terrestrial mammal data. The levels of trace metals in stomach contents of dolphins and porpoises were found to be similar. Risk quotients (RQ) calculated for the trace elements showed that risks to the dolphins and porpoises were generally low and within safe limits using the values based on the TRV, which are less conservative than those based on the RfD values. Using the RfD-based values the risks associated with arsenic, cadmium, chromium, copper, nickel and mercury were comparatively higher. The highest RQ was associated with arsenic, however, most of the arsenic in marine organisms should be in the non-toxic organic form, and thus the calculated risk is likely to be overestimated.  相似文献   
67.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   
68.
Glucose oxidase is a well-known enzyme that catalyzes the oxidation of β-d-glucose to produce gluconic acid and hydrogen peroxide. Fenton reaction is a powerful oxidation technology used for the oxidation of groundwater pollutants. For the application of Fenton reaction in groundwater remediation, successful operation of Fenton reaction near neutral pH, and on-site generation of both H2O2 and chelate will be beneficial. The focus of this experimental study was to couple the glucose oxidation reaction with chelate-based Fenton reaction. The idea was to use the hydrogen peroxide and chelate gluconic acid generated during glucose oxidation for the dechlorination of 2,4,6-trichlorophenol (TCP) by Fenton reaction. The oxidation of glucose was achieved using the enzyme in free and immobilized forms. The rate of production of hydrogen peroxide was determined for each system, and was used to estimate the time required for complete consumption of glucose during the process, thus avoiding any traces of glucose in the Fenton reaction. In the case of free enzyme reaction, separation of the enzyme was achieved using an ultrafiltration membrane before initiating the Fenton reaction. The oxidation of TCP by Fenton reaction was performed at varying ratios of gluconic acid/Fe, and its effect on the decomposition of TCP and H2O2 was studied. TCP degradation was studied both in terms of parent compound degradation and free chloride generation.  相似文献   
69.
The importance of the use of potassium in agriculture is increasing in South Asia for making most productive use of the nutrient in terms of economic returns. Nutrient supply traditionally by cattle manure is constrained by its insufficient availability. Municipal waste compost may be an alternative source of nutrient supplements. Field experiments were conducted at the Experimental Farm of Calcutta University, West Bengal, India during the wet seasons of 1997, 1998 and 1999 on flooded lowland rice. Potassium fractions in municipal waste compost and cattle manure were determined by sequential extraction and also the potassium uptake by rice to compare the effectiveness of municipal waste compost with traditional manure. Potassium was significantly bound to the organic matter in municipal waste compost. Potassium uptake by rice grain and straw increased significantly with the combined application of organics and fertilizers and it was higher in grain than in straw. Water-soluble and non-exchangeable potassium contents of municipal waste compost and cattle manure were highly correlated with the uptake of potassium by straw and grain. Exchangeable and residual potassium were also significantly correlated with the uptake of potassium by straw and grain of rice. Much higher uptake of K in rice straw and rain resulted from applying the manures in conjunction with fertilizers than when applied singly.  相似文献   
70.
Geochemical characteristics of surficial sediments in the Panangad region of Cochin estuary, the largest brackish-water humid ecosystem in the south-west coast of India, were analysed. Temporal variations in nutrient stoichiometry, seasonal characteristics of redox elements Fe and S, and the phosphorus geochemistry were employed for the purpose. The stoichiometric analysis pointed towards autochthonous origin of organic matter, possibility of nitrogen limitation, and allochthonous modification of redox conditions. Seasonal variations were not statistically significant for all the geochemical parameters, whereas significant spatial variations were observed with lower values at sandy stations, suggesting that the texture of the sediments is the main factor influencing the sediment geochemistry. Significant inter-relations between the geochemical parameters also suggest a common control mechanism. Based on these geochemical characteristics, the study region can be effectively categorized into two distinct zones, viz. (1) erosion and transportation and (2) deposition zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号