首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
  国内免费   2篇
安全科学   7篇
废物处理   4篇
环保管理   3篇
综合类   2篇
基础理论   4篇
污染及防治   19篇
评价与监测   5篇
社会与环境   3篇
灾害及防治   1篇
  2023年   1篇
  2022年   1篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有48条查询结果,搜索用时 546 毫秒
21.
Xiao P  Mori T  Kamei I  Kiyota H  Takagi K  Kondo R 《Chemosphere》2011,85(2):218-224
White rot fungi can degrade a wide spectrum of recalcitrant organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs). In this experiment, 20 white rot fungi, belonging to genus Phlebia, were investigated for their ability to degrade dieldrin. Based on the screening results, we further investigated Phlebia acanthocystis, Phlebia brevispora, and Phlebia aurea to determine their degradation capacity and metabolic products towards dieldrin and aldrin. The three fungi were able to remove over 50% of dieldrin in a low nitrogen medium, after 42 d of incubation. Three hydroxylated products were detected as metabolites of dieldrin, suggesting that in Phlebia strains, hydroxylation reactions might play an important role in the metabolism of dieldrin. In contrast to dieldrin, aldrin exhibited higher levels of degradation activity. Over 90% of aldrin was removed after 28 d of incubation, and several new metabolites of aldrin in microorganisms, including 9-hydroxyaldrin and two carboxylic acid products, were detected in fungal cultures. These results indicate that the methylene moiety of aldrin and dieldrin molecules might be prone to enzymatic attack by white rot fungi. In this study, we describe for the first time a new metabolic pathway of both compounds by fungi of genus Phlebia.  相似文献   
22.
The phenomenon of self-ignition and explosion during discharge of high-pressure hydrogen was investigated. To clarify the ignition conditions of high-pressure hydrogen jets, rapid discharge of the high-pressure hydrogen was examined experimentally. A diaphragm was used to allow rapid discharge of the high-pressure hydrogen. The burst pressure was varied from 4 to 30 MPa. The downstream geometry of the diaphragm was a flange and extension pipes, with the pipe length varying from 3 to 300 mm. The diameter of the nozzle was 5 or 10 mm. When short pipes were used, the hydrogen jet did not ignite. However, the hydrogen jet showed an increasing tendency to ignite in the pipe as the length of the pipe became longer. At higher burst pressures, a diffusion jet flame was formed from the pipe. The blast wave from the fireball formed on self-ignition of the hydrogen jet resulted in an extremely rapid pressure rise.  相似文献   
23.
Exposure to various chemicals can cause adverse effects to health, such as asthma and allergies, especially in children. Data on personal exposure levels in children are scarce, thus small lightweight diffusive mini-samplers for aldehydes and volatile organic compounds (VOCs) were designed to measure the exposure level of children to these chemicals. The aim of the study was to validate and examine the applicability of these mini-samplers for measuring daily chemical exposure. The diffusive mini-samplers are 20 mm in length, 11 mm in diameter, and 1.67 g in weight. The devices are cylindrically shaped with polytetrafluoroethylene membrane filters placed at each end. To measure aldehydes and acetone, 20 mg of 2,4-dinitrophenylhydrazine was used as an absorbent. To measure VOCs, a carbon molecular sieve was used. The sampling rate for each chemical was determined by parallel sampling with active samplers in a closed exposure bag. The blank levels of the chemicals and the storage stability of the device were tested. The mini-samplers were compared to commercially available diffusive samplers. To examine the applicability of the samplers, 65 elementary school children carried them for 24 h. The sampling rates for formaldehyde, acetaldehyde, and acetone were 20.9, 22.9, and 19.7 mL min(-1), respectively. The limits of quantification (LOQ) for the 24-hour sampling by high-performance liquid chromatography/ultraviolet (HPLC/UV) analysis were 8.3, 7.6, and 8.8 μg m(-3) for formaldehyde, acetaldehyde, and acetone, respectively. The sampling rates for the 11 VOCs were determined and ranged from 3.3 mL min(-1) for styrene and 2-ethyl-1-hexanol to 11.7 mL min(-1) for benzene. The LOQ for the 24-hour sampling by gas chromatography-mass spectrometry (GC-MS) analysis ranged from 5.9-105.2 μg m(-3), 1.1-24.7 parts per billion. The storage stability after 5 days ranged from 94.8 to 118.2%. Formaldehyde, acetone, benzene, and toluene were detected above the LOQ in more than 90% of the children, and the median concentrations were 21.7, 20.9, 10.1, and 21.5 μg m(-3), respectively. This study shows that the diffusive samplers developed were suitable for children to carry and were capable of measuring the children's daily chemical exposure.  相似文献   
24.
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.  相似文献   
25.
Biodegradation of the polychlorinated naphthalenes (PCNs) 1,4-dichloronaphthalene (1,4-DCN), 2,7-dichloronaphthalene (2,7-DCN), and 1,2,3,4-tetrachloronaphthalene (1,2,3,4-TCN), by the white-rot fungus Phlebia lindtneri was investigated. 1,4-DCN was metabolized to form six metabolites by the fungus. It was estimated from GC–MS fragment patterns that the metabolites were four putative hydroxylated and two dihydrodihydroxylated compounds. One of the hydroxylated products was identified as 2,4-dichloro-1-naphthol by GC–MS analysis using an authentic standard. This intermediate indicated chlorine migration in a biological system of P. lindtneri. 2,7-DCN was metabolized to five hydroxylated metabolites and a dihydrodihydroxylated metabolite. Significant inhibition of the degradation of DCNs and formation of their metabolic products was observed in incubation with the cytochrome P-450 monooxygenase inhibitor piperonyl butoxide. The formation of the dihydrodiol-like metabolites, chlorine migration and the experiment with P-450 inhibitor suggested that P. lindtneri provides hydroxyl metabolites via benzene oxide intermediates of DCNs by a cytochrome P450 monooxygenase. In addition, P. lindtneri degraded 1,2,3,4-TCN; two hydroxylated compounds and a dihydrodihydroxylated compound were formed.  相似文献   
26.
To elucidate the influence of landfill gas (LFG) emission on environmental factors, an ecological investigation that was primarily concerned with the characteristics of vegetation, cover soil, and solid waste in the landfill was carried out. Temporal and spatial variations in vegetation diversity and coverage and their effects on reducing the emission of methane in the landfill were investigated. The results showed that both vegetation coverage and diversity increased with elapsed landfill closure time. The transition trend of the vegetation species was from perennial plant (Phragmites australis) to annual plants. Perennial vegetation was the dominant type of vegetation during the early closure period, and annual vegetation coverage increased with closure time. Vegetation preferentially appeared in areas of comparatively high depth of cover soil, which was characterized by high moisture retentiveness that enabled vegetation growth. The concentrations of methane and carbon dioxide in the cover soil significantly decreased with increasing closure time. The concentrations of methane and carbon dioxide from bare cover soil were higher than those from vegetated cover soil whereas the CO2 flux of bare cover soil was less than that of vegetated cover soil.  相似文献   
27.
To prepare a substrate for microbial conversion of xylose into xylitol, the culm of Sasa senanensis was hydrolyzed with dilute sulfuric acid. When the reaction temperature was fixed at 121°C, an optimum yield of xylose was obtained by treatment with 2% sulfuric acid for 1 h. An increase in the sulfuric acid concentration or a prolonged reaction time resulted in a decrease in the xylose yield. A fermentable substrate with a relatively high xylose concentration (36.7 g l−1) was obtained by hydrolysis with 2% sulfuric acid with a liquid-to-solid ratio of 5 g g−1. During hydrolysis at elevated temperatures, certain undesired byproducts were also generated, such as degradation products of solubilized sugars and lignin, which are potential inhibitors of microbial metabolism. These compounds were, however, successfully removed from the hydrolysate by treatment with activated char.  相似文献   
28.
It is indispensable to predict the pressure behavior caused by gas explosions for the safety management against accidental gas explosions. In this study, a simple method for predicting the pressure behavior during gas deflagrations in confined spaces was examined. Previously the pressure behavior was calculated analytically assuming laminar flame propagation. However, the results of this method often provide underestimation compared with experimental data. It was known the underestimation intensifies as the scale of explosion spaces becomes larger. On the large scale gas deflagration, flame instability (especially hydrodynamic instability) might be more effective and wrinkles appeared on the flame front. Then, the flame surface area was increased and the propagating flame was gradually accelerated. The ordinary prediction methods led to the underestimation because the propagating flame was assumed to be laminar. In this study, we considered the effect of flame wrinkles caused by flame instabilities. By regarding the flame front as a fractal structure, the flame surface area could be modified. Because a flame surface starts to be wrinkled on a certain flame radius, proper determination of the critical flame radius provided accurate prediction of pressure behavior on a large scale deflagration. In addition, correction of the KG value in a large vessel was discussed.  相似文献   
29.
Ohta M  Oshima S  Osawa N  Iwasa T  Nakamura T 《Chemosphere》2004,54(10):1521-1531
PVDC and three non-chlorinated polymers (PP, PET, and PA) were incinerated at 700-850 degrees C in a laboratory-scale quartz tubular furnace in the presence of HCl (ca. 500 ppm congruent with 0.8 mg/l), and the gas-phase formation of PCDD/Fs, their putative precursors and their homologue profiles were investigated. The addition of HCl had little or no apparent effect on the level of PCDD/Fs formation during PVDC combustion, and their homologue profiles were quite different from those of the three non-chlorinated polymers. With PVDC, O8CDD and particularly O8CDF were by far most prevalent, apparently as a result of the selective formation of the precursors. With each of the three non-chlorinated polymers, combustion at 800 degrees C or higher in the presence of HCl resulted in PCDD/Fs formation at levels equaling or exceeding those observed with PVDC. In trials made with one of them (PP) under the same conditions but using a large polymer sample (100 mg vs 20 mg in all other trials), the level of PCDD/Fs formation was far higher than with the smaller polymer samples, and thus demonstrated the importance of appropriate combustion conditions for polymer incineration.  相似文献   
30.
Oriental lacquer film was prepared and exposed to a fluorescent lamp. The color difference and gloss of the surface of the film decreased compared to those of film kept in a dark place by irradiation with the fluorescent light. The percentage of discoloration was 7.0% on a relative scale with an irradiation of 3600 h. The surface of the film was characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The oxygen content of the surface increased considerably with the decrease in triene groups with exposure time. These changes were also observed when the film was exposed in a glass or acrylic plate box. The change of the above properties was not observed when the film was kept in a dark place for more than 4800 h. The results suggest that oriental lacquer film deteriorates even under irradiation with visible light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号