首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   5篇
  国内免费   27篇
安全科学   45篇
废物处理   18篇
环保管理   20篇
综合类   62篇
基础理论   15篇
污染及防治   33篇
评价与监测   8篇
社会与环境   2篇
  2023年   10篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   14篇
  2013年   14篇
  2012年   13篇
  2011年   6篇
  2010年   3篇
  2009年   11篇
  2008年   6篇
  2007年   16篇
  2006年   1篇
  2005年   11篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
111.
Life Cycle Assessment (LCA) was applied to two smallholder milk production systems in Peru in order to evaluate the environmental burden of milk produced in each. An Andean highland milk production system where livestock feeding is restricted to permanent pastures supplemented with on farm grown ryegrass-clover was opposed to a coastal system with dairy cows fed a diet consisting of fodder maize and purchased concentrate. Milk production levels (kg/cow day) differed considerably with 2.57 for the highland and 19.54 for the coastal system. A Life Cycle Inventory was calculated for the functional unit of 1 kg energy corrected milk (ECM) and the environmental impacts global warming, acidification and eutrophication were estimated for 1 kg ECM, 1 ha and 1 animal, considering the multi-functionality of the system. The highland system was characterized by a high land use (23.1 m2a/kg ECM vs. 1.71 m2a/kg ECM at the coast). Irrigation water and energy were on the other hand used to a much higher amount at the coast (7291 l/kg ECM and 8791 MJ/kg ECM, respectively) than in the highlands (848 l/kg ECM and 0.20 MJ/kg ECM). Global warming potential, acidification and eutrophication were higher for 1 kg ECM produced in the highlands than at the coast by 10.6 kg CO2 equivalents, 6.58 g sulfur dioxide equivalents and 10.63 g phosphate equivalents, respectively. Nevertheless, 5220 kg CO2 equivalents more were emitted per animal at the coast than in the highlands. Also acidification and eutrophication were estimated to be on average 6 and 4 times higher at the coast compared to the highlands when expressed for the functional units of 1 ha and 1 animal.

Results

Whereas livestock is mainly responsible for impacts on the environment in the highlands, at the coast both livestock related emissions and forage cultivation play an important role. Furthermore CO2 releases from soybean cultivations heavily contribute to total emissions. Sensitivity analysis indicates that for dairy systems relying on crop by-products as feed the choice of the allocation method is a crucial point in a LCA study. Based on the results of this study, strategies in order to reduce the environmental burden of milk production should focus on an increase of production levels and a reduction of methane emissions from enteric fermentation in the highlands and a modification of the concentrate components replacing soya as the protein source at the coast.  相似文献   
112.
Surface water methane(CH4) and nitrous oxide(N2O) concentrations and fluxes were investigated in two subtropical coastal embayments(Bramble Bay and Deception Bay,which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays.During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH24/(m·day) while N2 O varied between 0.4 ± 0.1 and1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions(t CO2-e) were 63%–90% N2 O dominated implying that a reduction in N2 O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas(GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   
113.
The Maximum Experimental Safe Gap (MESG) is an important criterion to assess the propagation of flames through small gaps. This safety-related parameter is used to classify the flammable gases and vapors in explosion groups, which are fundamental to constructional explosion protection. It is used both, for the safe design of flameproof encapsulated devices as well as for selecting flame arresters appropriate to the individual application. The MESG of a fuel is determined experimentally according to the standard ISO/IEC 80079-20-1:2017 at normal conditions (20 °C, 1.0 bar) with air as oxidizing gas. The aim of this work is to investigate the effect of inert gas addition on the MESG in order to assess the effectiveness of inertization in constructional explosion protection. The term limiting experimental safe gap (SG) is used for the result of these measurements. The fuel-air mixtures (fuels: hydrogen, ethylene, propene, methane) used as representatives for the explosion groups in flame arrester testing were chosen and diluted with inert gas (nitrogen, carbon dioxide) before testing. The dependence of the limiting experimental safe gap on the total initial pressure, amount and nature of inert additive is discussed. The initial pressure was varied up to 2.0 bar to include increased pressure conditions used in flame arrester testing. Apart from the well-known reciprocal dependence on the initial pressure, the added inert gas results in an exponential increase of SG. This effect depends on the inertizing potential of the gas and is therefore different with nitrogen and carbon dioxide. The ranking of the fuels is the same as with MESG. As a result, various mixtures of the same limiting experimental safe gap can now be chosen and tested with an individual flame arrester to prove the concept of a constant and device-related limiting safe gap. The work was funded by BG-RCI in Heidelberg (PTB grant number 37056).  相似文献   
114.
Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH4) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N2O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH4 emissions at low level (75kgN/ha). But both CH4 and N2O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields.  相似文献   
115.
In this study,a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable.Different materials were studied as landfill cover system in lab-scale columns:mechanical–biological pretreated municipal solid waste(MBP);mechanical–biological pretreated biowaste(PB);fine(PBS_f)and coarse(PBS_c)mechanical–biological pretreated mixtures of biowaste and sewage sludge,and natural soil(NS).The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested,even coupled with activated carbon membranes.Concentrations of CO_2,CH_4,O_2,N_2,H_2S and mercaptans were analysed at different depths along the columns.Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate(MOR).The highest maximum and mean MOR were observed for MBP(17.2 g CH_4/m~2/hr and 10.3 g CH_4/m~2/hr,respectively).Similar values were obtained with PB and PBS_c.The lowest values of MOR were obtained for NS(6.7 g CH_4/m~2/hr)and PBS_f(3.6 g CH_4/m~2/hr),which may be due to their low organic content and void index,respectively.Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process:MBP coupled with 220 g/m~2and 360 g/m~2membranes gave maximum MOR of 16.5 g CH_4/m~2/hr and 17.4 g CH_4/m~2/hr,respectively.Activated carbon membranes proved to be very effective on H_2S adsorption.Furthermore,carbonyl sulphide,ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials.  相似文献   
116.
Greenhouse gas(GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in situ detection and simulation experiments were developed to study the natural release of GHG into the atmosphere in the Shengli Oilfield,the second largest oilfield in China. The results showed that methane(CH4) and carbon dioxide(CO2) were the primary gases released naturally from the oilfield-produced water.The atmospheric temperature and release time played important roles in determining the CH4 and CO2emissions under atmospheric conditions. Higher temperatures enhanced the carbon emissions. The emissions of both CH4 and CO2from oilfield-produced water were highest at 27°C and lowest at 3°C. The bulk of CH4 and CO2was released from the oilfield-produced water during the first release period, 0–2 hr, for each temperature, with a maximum average emission rate of 0.415 g CH4/(m3·hr) and 3.934 g CO2/(m3·hr), respectively. Then the carbon emissions at other time periods gradually decreased with the extension of time. The higher solubility of CO2 in water than CH4 results in a higher emission rate of CH4 than CO2over the same release duration. The simulation proved that oilfield-produced water is one of the potential emission sources that should be given great attention in oil and gas systems.  相似文献   
117.
A systematic effort was made to assess the emission of methane from paddy fields using closed chamber technique. Methane emission measurements were performed over a year during the Kharif (wet season), Rabi (dry season), and fallow periods. Various soil parameters like redox potential, organic carbon and ferrous ion were determined to evaluate their control on methane emissions. Diurnal measurement of the flux showed a minimum (0.44?mg?m?2?h?1) in the morning (8?a.m.), which increased gradually to a value of 1.16?mg?m?2?h?1 till the evening due to the rise in soil temperature. The seasonally integrated flux (E SIF) for CH4 was calculated. The E SIF for methane during Kharif and Rabi crops were found to be 5.97?g?m?2 and 2.59?g?m?2, respectively. It was observed that the methane flux was maximum during flowering and fertilizer application stages for both paddy cropping seasons. The redox potential was low and the ferrous ion was higher during flowering and tiller stages. The methane emission was higher at E AIF) was calculated for methane to make a budget estimate of methane emission from rice cultivated under rain fed drought prone water regime.  相似文献   
118.
光腔衰荡光谱法(CRDS)和气相色谱法(GC)均被广泛应用于环境空气中甲烷(CH4)的测定。采用CRDS和GC这2种自动监测方法对CH4标准气体和环境空气样品进行分析比对。结果表明,通过使用统一的标准气体和校准方法,2种方法测定CH4标准气体的不确定度均<0.5%,CRDS法的不确定度更低;2种方法测定CH4环境空气样品结果的平均相对误差为0.28%,Z检验法显示,2种方法没有显著性差异,并具有很高的相关性和一致性。提出,对于测量精度和稳定性更高的大气CH4监测领域,建议优先选用CRDS法或经过比对达到同等性能的方法;而对于测量精度和稳定性要求稍低的CH4排放源及周边等监测领域,可以采用GC法。  相似文献   
119.
无人机已被证明是适用于甲烷点源排放速率估算的一种新颖且有效的观测平台,然而对其估算的准确度与不确定度尚缺乏有效分析与量化。利用包含已知排放速率被动示踪物的大涡模拟,再现了1种强湍流混合环境下的甲烷羽流并对羽流进行了连续多次模拟飞行观测实验,通过逆高斯方法(IG)和质量平衡方法(MB)对排放速率进行了估算并量化了其准确度与不确定度,最后对不同的飞行时间安排及差异化的空间飞行策略进行了探究以提升估算效果。结果表明,对于研究所涉及的大气混合条件,通过IG和MB方法对多次模拟飞行估算的排放均值可达到既定排放值的95.3%和86.1%,不确定度为56.6%和56.9%;通过单架无人机多次重复飞行采样进行估算可显著降低不确定度,5次重复飞行可降至<30%;2架无人机在不同高度的同步飞行可使MB方法估算的不确定度降至35.2%~51.9%,IG方法则对该措施不敏感。研究仅考虑甲烷的传输扩散过程,结果也适用于其他被动示踪物的点源排放估算。  相似文献   
120.
广州地区稻田甲烷排放通量研究   总被引:10,自引:0,他引:10  
1993~1994年连续2a在广州东郊采用自动采样和气相色谱分析系统测量了稻田甲烷的排放率,首次获得了华南地区赤红壤类型稻田甲烷排放特征和排放通量?结果表明:广州地区稻田甲烷排放率的日变化和季节变化随气温?灌溉状态及水稻不同生长期而变化,早稻甲烷平均排放量为1.6mg/(m2·h);晚稻为1.25mg/(m2·h),排放率较国内其他观测点低?在当地常规干湿灌溉方式下,估算得到广东和广西两省稻田甲烷排放总量约为0.26Tg/a?   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号