首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   17篇
安全科学   1篇
废物处理   2篇
环保管理   93篇
综合类   9篇
基础理论   6篇
评价与监测   2篇
社会与环境   2篇
灾害及防治   4篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   4篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有119条查询结果,搜索用时 171 毫秒
11.
Understanding threatened species diversity is important for long‐term conservation planning. Geodiversity—the diversity of Earth surface materials, forms, and processes—may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species’ diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock‐type and soil‐type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity‐weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1‐km2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity‐weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage is an important principle in conservation.  相似文献   
12.
Urban stream restoration continues to be used as an ecological management tool, despite uncertainty about the long‐term sustainability and resilience of restored systems. Evaluations of restoration success often focus on specific instream indicators, with limited attention to the wider basin or parallel hydrologic and geomorphic process. A comprehensive understanding of urban stream restoration progress is particularly important for comparisons with nonurban sites as urban streams can provide substantial secondary benefits to urban residents. Here, we utilize a wide range of indicators to retrospectively examine the restoration of Nine Mile Run, a multi‐million dollar stream restoration project in eastern Pittsburgh (Pennsylvania, USA). Examination of available continuous hydrological data illustrates the high cost of failures to incorporate the data into planning and adaptive management. For example, persistent extreme flows drive geomorphic degradation threatening to reverse hydrologic connections created by the restoration and impact the improved instream biotic communities. In addition, human activities associated with restoration efforts suggest a positive feedback as the stream restoration has focused effort on the basin beyond the reach. Ultimately, urban stream restoration remains a potentially useful management tool, but continued improvements in post‐project assessment should include examination of a wider range of indicators.  相似文献   
13.
Natural channel design (NCD) and analytical channel design (ACD) are two competing approaches to stable channel design that share fundamental similarities in accounting for sediment transport processes with designs based on hybrid fluvial geomorphology and hydraulic engineering methods. In this paper, we highlight the linkage between ACD's capacity/supply ratio (CSR) and NCD's sediment capacity models (FLOWSED/POWERSED), illustrating how ACD and NCD have reached a point of convergent evolution within the stream restoration toolbox. We modified an existing CSR analytical spreadsheet tool which enabled us to predict relative channel stability using both conventional bed load transport equations and regional sediment regression curves. The stable channel design solutions based on measured data most closely matched the Parker (ACD) and/or Pagosa good/fair (NCD) relationships, which also showed the greatest CSR sensitivity in response to channel alterations. We found that CSR differences among the transport relationships became more extreme the further the design width deviated from the supply reach, suggesting that a stable upstream supply reach may serve as the best design analog. With this paper, we take a step toward resolving lingering controversy in the field of stream restoration, advancing the science and practice by reconciling key differences between ACD and NCD in the context of reach scale morphodynamics.  相似文献   
14.
Armoring of streambanks is a common management response to perceived threats to adjacent infrastructure from flooding or erosion. Despite their pervasiveness, effects of reach‐scale bank armoring have received less attention than those of channelization or watershed‐scale hydromodification. In this study, we explored mechanistic ecosystem responses to armoring by comparing conditions upstream, within, and downstream of six stream reaches with bank armoring in Southern California. Assessments were based on four common stream‐channel assessment methods: (1) traditional geomorphic measures, (2) the California Rapid Assessment Method for wetlands, (3) bioassessment with benthic macroinvertebrates, and (4) bioassessment with stream algae. Although physical responses varied among stream types (mountain, transitional, and lowland), armored segments generally had lower slopes, more and deeper pools and fewer riffles, and increased sediment deposition. Several armored segments exhibited channel incision and bank toe failure. All classes of biological indicators showed subtle, mechanistic responses to physical changes. However, extreme heterogeneity among sites, the presence of catchment‐scale disturbances, and low sample size made it difficult to ascribe observed patterns solely to channel armoring. The data suggest that species‐level or functional group‐level metrics may be more sensitive tools than integrative indices of biotic integrity to local‐scale effects.  相似文献   
15.
Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.  相似文献   
16.
The geologic and geomorphic expressions of a mineral deposit determine its location, size, and accessibility, characteristics which in turn greatly influence the success of artisans mining the deposit. Despite this critical information, which can be garnered through studying the surficial physical expression of a deposit, the geologic and geomorphic sciences have been largely overlooked in artisanal mining‐related research. This study demonstrates that a correlation exists between the roles of female miners at artisanal diamond and gold mining sites in western and central Africa and the physical expression of the deposits. Typically, women perform ore processing and ancillary roles at mine sites. On occasion, however, women participate in the extraction process itself. Women were found to participate in the extraction of ore only when a deposit had a thin overburden layer, thus rendering the mineralized ore more accessible. When deposits required a significant degree of manual labour to access the ore due to thick overburden layers, women were typically relegated to other roles. The identification of this link encourages the establishment of an alternative research avenue in which the physical and social sciences merge to better inform policymakers, so that the most appropriate artisanal mining assistance programs can be developed and implemented.  相似文献   
17.
Kibler, Kelly, Desiree Tullos, and Mathias Kondolf, 2011. Evolving Expectations of Dam Removal Outcomes: Downstream Geomorphic Effects Following Removal of a Small, Gravel‐Filled Dam. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2011.00523.x Abstract: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams that no longer fulfill their intended function. As the decommissioning of small dams becomes increasingly commonplace in the future, it is essential that decisions regarding how and when to remove these structures are informed by appropriate conceptual ideas outlining potential outcomes. To refine predictions, it is necessary to utilize information from ongoing dam removal monitoring to evolve predictive tools, including conceptual models. Following removal of the Brownsville Dam from the Calapooia River, Oregon, aquatic habitats directly below the dam became more heterogeneous over the short term, whereas changes further downstream were virtually undetectable. One year after dam removal, substrates of bars and riffles within 400 m downstream of the dam coarsened and a dominance of gravel and cobble sediments replaced previously hardpan substrate. New bars formed and existing bars grew such that bar area and volume increased substantially, and a pool‐riffle structure formed where plane‐bed glide formations had previously dominated. As the Brownsville Dam stored coarse rather than fine sediments, outcomes following removal differ from results of many prior dam removal studies. Therefore, we propose a refined conceptual model describing downstream geomorphic processes following small dam removal when upstream fill is dominated by coarse sediments.  相似文献   
18.
ABSTRACT: Data collected from 121 stream reaches during 1991 to 1993 were evaluated to determine the applicability of the Rosgen Stream Classification System (RSCS) to the low relief terrain within the Chequamegon‐Nicolet National Forest (CNNF) in Wisconsin, USA. All reaches were classified to RSCS Level I and II except that 10.7 percent had sinuosities below the continuum limits and one reach had a predominantly organic substrate. Five of eight possible RSCS Level I types were observed including B, C, D, A, E, and F; 86 percent were C and E types. Seventeen of 94 possible RSCS Level II types were observed. Most reaches were slightly entrenched, had low to moderate width/depth ratios, relatively low sinuosity, low slope, and sand or gravel as the dominant channel material. Discriminant analyses were used to verify the applicability of RSCS for streams within the CNNF; discriminant functions correctly classified 92.5 and 94.7 percent of the Level I and II RSCS types, respectively. When limits for E and F types were modified slightly at Level II by adding an additional category for slopes less than 0.1 percent (a modification we recommend for low relief terrain), discriminant functions correctly classified 99.1 percent of the types. Adding another slope break at 0.3 percent produced similar results. Based on our analyses, RSCS works well within the CNNF and is probably applicable to other areas with low‐relief terrain.  相似文献   
19.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   
20.
根据2003年11月辽宁团山海蚀地貌自然保护区选划研究现场调查,探讨了该区海蚀地貌的成因,评价了海域环境质量和生物多样性,依据海洋自然保护区类型与级别划分原则(GBT17504-1998),确定了保护区类型,并采用定性与定量相结合方法给出了保护区级别。结果表明,保护区海域环境质量总体尚好,生态群落正常,保护区类型符合《海洋自然保护区分类原则》(类别III)相关标准,主要保护对象为海蚀地貌景观,该保护区可建成国家级,这在全国沿海尚不多见。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号