首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   13篇
  国内免费   104篇
安全科学   2篇
环保管理   1篇
综合类   151篇
基础理论   11篇
污染及防治   17篇
评价与监测   1篇
  2023年   3篇
  2022年   13篇
  2021年   10篇
  2020年   13篇
  2019年   17篇
  2018年   15篇
  2017年   10篇
  2016年   12篇
  2015年   8篇
  2014年   8篇
  2013年   13篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   13篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  1997年   1篇
  1994年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
51.
为了实现污水处理的深度脱氮除磷及蛋白质源污泥增量,分别采用生物吸附/A~2O和生物吸附/MBR/硫铁自养反硝化工艺进行对比试验研究.结果表明,生物吸附工艺可以快速富集进水中的大部分有机物,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.两套污水处理工艺均获得了优质水质,出水氨氮、总氮和总磷分别达到5、7和0.4 mg·L~(-1)以下.优质碳源投加到A~2O和MBR工艺段,碳源环境的改善使得污泥增长率和氮的同化比例显著提高,第4阶段污泥产率分别达到0.59和0.49 g·g~(-1)(以每g COD产VSS量(g)计),氮的同化率分别达到66%和59%.此外,污泥中蛋白质及氨基酸含量也显著增长,A~2O工艺段增长率分别为34.7%和31.2%,MBR工艺段相应的增长率分别为19.7%和18.3%,实现了蛋白质源污泥的增量,为污泥资源化利用提供了优质原料.  相似文献   
52.
建立膜电解电化学氢自养MBBR反应器(移动床生物膜反应器)用于去除水中高氯酸盐,微生物利用阴极电解产生的氢气将高氯酸根还原为氯离子,而后氯离子在阳极发生氧化析氯反应生成活性氯进一步提升出水水质,从而实现高氯酸根的深度转化.利用该反应器研究了高氯酸根的转化过程及相关影响因素,结果表明:进水ClO4-浓度为(4.98±0.091)mg/L,维持HRT(水力停留时间)为4h,施加电流由6mA增加至15mA,反应器对高氯酸根的去除率由(39.75±2.09)%增加至(98.99±0.05)%,总出水活性氯浓度由(0.057±0.003)mg/L增加至(0.070±0.002)mg/L,pH值稳定在7.96~8.11,浊度较低为(0.89±0.27)NTU.进一步增大施加电流(20mA),导致阴极室溶液pH值超过9.5,进而影响微生物活性,去除率急剧下降至(30.75±1.19)%.利用扫描电子显微镜(SEM)观察反应器内微生物形貌,发现反应器内微生物均附着于填料表面,以短杆菌为主,增殖缓慢.运用高通量测序技术对接种及运行第24d的微生物群落结构展开分析.结果显示,反应器运行过程中,菌群多样性下降,Thauera菌属为主要的氢自养还原优势菌属,其丰度达到8.25%.  相似文献   
53.
为强化潮汐流人工湿地(TFCW)中基于亚硝化的全程自养脱氮(CANON)作用,探究了不同排水速率(vd)下系统中氮素的迁移转化机制与微生物特征.结果表明,vd可显著影响TFCW中脱氮功能微生物的数量与活性,进而影响其氮素转化速率.当vd由1.00降至0.50L/min时,填料层中逐渐形成较为严格的限氧环境,有利于短程硝化的稳定和厌氧氨氧化菌的富集,进而有助于CANON反应体系在TFCW中形成.而当vd小于0.50L/min时,填料层中溶解氧相对不足,好氧氨氧化菌活性受到抑制,数量随之减少,CANON作用的强化效果有限,系统脱氮性能受到影响.当vd为0.50L/min时,TFCW中的CANON作用可得到最大限度的强化,系统脱氮性能达到最佳,其TN和NH4+-N的去除负荷分别为(116.79±13.16)和(102.75±4.35) mg/(L·d).对vd的合理设置可实现TFCW中CANON作用的强化,有利于CANON型人工湿地的构建.  相似文献   
54.
通过接种亚硝化与厌氧氨氧化污泥,以无机高氨氮(110~130mg/L)废水为对象,研究上流式双层填料反应器的启动与运行.反应器上层与下层分别以沸石和聚氨酯海绵作为填料,启动两种填料高度比分别为2:3和3:2的1号和2号反应器,历时139d成功建立自养脱氮系统.结果表明,1号反应器最高总氮去除率达84.4%,2号最高总氮去除率达81.8%,总氮去除负荷分别达0.15,0.14kgN/(m3·d).进水未添加有机碳源时,2号△NO3--N/△NH4+-N一直稳定在特征值0.11附近,自养脱氮系统更为稳定.在添加有机碳源情况下,2个反应器总氮去除率都得到提升,△NO3--N/△NH4+-N也更为稳定.说明一定浓度的有机物能强化系统稳定运行,提高系统脱氮性能.反冲洗稳定后,1号反应器出水NO3--N由未反冲洗前的17.61mg/L降低到10mg/L以下,说明适当的反冲洗可以有效恢复反应器运行,反冲洗与NOB抑制手段相结合能更好地维持反应器的长期稳定运行.  相似文献   
55.
通过运行双室的异养-硫自养联合反应器(下部为异养区、上部为自养区),去除高浓度高氯酸盐(ClO_4~-)废水.考察不同进水碳氯比(C/Cl)和ClO_4~-浓度条件下,ClO_4~-的降解特性及出水硫酸盐(SO_4~(2-))浓度.结果表明,通过调节进水C/Cl比由2~1,反应器在36 d快速成功启动;进水ClO_4~-浓度由250 mg·L~(-1)提升至400 mg·L~(-1)时,微生物对高浓度ClO_4~-表现出良好的耐受性,ClO_4~-的去除率始终稳定在95%以上;通过调整C/Cl比至1.2,可减少自养区ClO_4~-负荷,使出水SO_4~(2-)浓度降至250 mg·L~(-1)以下.此外,本研究证实了细菌分泌的溶解性有机物中色氨酸和酪氨酸是造成自养区出水TOC升高的原因.由于采用异养-硫自养联合工艺,控制碳源的投加,从而减少了异养区污泥的产量;同时,异养区产生碱度可以平衡自养区产生的酸度,减少了自养过程中碱度的投加;异养区产生碳酸盐也可以作为自养区的碳源,实现了异养区和自养区功能上的"互补".  相似文献   
56.
同时硝化反硝化生物脱氮技术研究进展   总被引:31,自引:0,他引:31  
对同时硝化反硝化(SND)生物脱氮新技术的机理进行了较全面的探讨,对影响SND的控制因素及其研究现状进行了简单的综述,最后指出了实现SND存在的一些急需解决的问题。  相似文献   
57.
滤速与水质对低温含铁锰氨地下水中氨去除的影响   总被引:2,自引:1,他引:1  
张杰  梅宁  刘孟浩  叶雪松  李冬 《环境科学》2020,41(3):1236-1245
在某除铁锰氨氮地下水水厂,以中试滤柱开展了低温(6~8℃)生物除铁锰硝化耦合CANON[Fe(Ⅱ) 2.91~6.35 mg·L~(-1)、 Mn(Ⅱ) 0.47~0.98 mg·L~(-1)和NH~+_4-N 1.15~2.26 mg·L~(-1)]工艺运行实验,探究滤速与水质对氨氮去除的影响.结果表明,停运1个月的成熟低温铁锰氨生物滤柱以2 m·h~(-1)的滤速经过40 d的培养,成功启动了低温生物除铁锰硝化耦合CANON工艺.在此工艺中当保持进水浓度不变,提升滤速会降低滤柱对氨氮的网捕效率,增加滤层深处的氨氮浓度,提高滤层深处AnAOB对氨氮离子的网捕效率,进而导致水中经CANON作用去除的氨氮增加,而硝化作用去除的氨氮降低;当保持滤速不变,提升进水氨氮浓度会使更高浓度的氨氮进入滤层,增加了氨氮和亚氮共存区域中氨氮的浓度,提高了滤层中AnAOB对氨氮离子的网捕效率,进而导致CANON作用去除的氨氮增加.  相似文献   
58.
采用微氧升流式膜生物反应器(UMSB-MBR)启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺,拟通过构建数学模型实现工艺启动过程分析及其优化过程预测.结果表明:反应器历经厌氧氨氧化和全程自养脱氮(CANON)工艺后,通过引入有机碳源(C/N比为0.5)启动SNAD工艺(总氮去除率可达87.66%),并运用ASM1模型及实验数据成功建立SNAD工艺启动模型;通过模型分析发现,氮负荷(NLR)的增大(由0.24~1.88kg/(m3·d)),适宜的溶解氧(DO)浓度(0.2~0.4mg/L)均有利于SNAD工艺的快速启动;通过模型预测发现,随着C/N比(由0.5~3.0)增大,反硝化菌(DNB)对厌氧氨氧化菌(AnAOB)活性的抑制程度不断增强,造成脱氮主要途径由厌氧氨氧化向异养反硝化过程转化,综合考虑C/N比为1.5时SNAD工艺效能和微生物菌群配置处于最佳状态.  相似文献   
59.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   
60.
为了研究溶解氧对SBR单级颗粒污泥自养脱氮系统的影响,基于活性污泥ASM3模型和短程硝化-硝化-反硝化模型,将颗粒污泥传质过程与氨氧化菌(AOB)、厌氧氨氧化菌(AAOB)、亚硝酸盐氧化菌(NOB)、反硝化菌(DNF)的生长过程、好氧内源呼吸及缺氧内源呼吸过程等耦合,建立了单级自养脱氮颗粒污泥动力学模型,并对颗粒内部基质浓度分布进行预测.结果显示,当DO为0.4mg/L时,好氧区和缺氧区(厌氧区)的比例为0.4:1;当DO为0.6mg/L时,颗粒污泥好氧区与缺氧区(厌氧区)的比例为3:1.同时,根据基质反应速率方程,建立了颗粒污泥的单级自养脱氮系统动力学模型,对SBR系统运行效果进行预测,结果显示,DO为0.6mg/L时,氨氮反应完全,亚硝酸盐氮和硝酸盐氮在5mg/L以下,总氮去除率模拟值为89%左右,略低于实际测量脱氮率95%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号