首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   27篇
安全科学   1篇
废物处理   2篇
环保管理   3篇
综合类   46篇
基础理论   17篇
污染及防治   11篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
排序方式: 共有80条查询结果,搜索用时 218 毫秒
71.
Inoculated with conventional anaerobic activated sludge, the Anammox process was successfully developed in an anaerobic rotating biological contactor (AnRBC) fed with a low ratio of C/N synthetic wastewater. Operated in a single point feed mode, the AnRBC removed 92.1% (n = 126) of the influent N at the highest surface load of 12 g/(m2.day). The biomass increased by 25% and 17.1 g/(m2.day) of maximum N removal surface load was achieved by elevating flow rate with another feed point. Fluorescence in situ hybridization and polymerase chain reaction analysis indicated that the Anammox genus Candidatus Kuenenia stuttgartiensis dominated the community. Both Anammox and denitrifying activity were detected in biofilm by the application of microelectrodes. In the outer layer of the biofilm (0-2500 μupm), nitrite and ammonium consumed simultaneously in a ratio of 1.12/1, revealing the occurrence of Anammox. In the inner layer (> 2500 μupm), a decrease of nitrate was caused by denitrification in the absence of nitrite and ammonium.  相似文献   
72.
The presence of ammonia nitrogen in landfill leachates poses a significant problem for treatment plant operators. The nitrification-denitrification process mostly carries out the nitrogen conversion in biological treatment systems. However, recent research shows that other processes by anaerobic ammonia-oxidizing bacteria (Anammox) and ammonia-oxidizing archaea (AOA) were also responsible for the removal of nitrogen in biological systems. In this study, the nitrogen-converting microorganisms in the Bursa Hamitler Leachate Treatment Plant were identified and monitored by using molecular tools. Fluorescent in situ hybridization (FISH) and slot-blot hybridization results showed that the Nitrosomonas and Nitrospira species were the dominant ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), respectively. Quantitative real-time PCR results indicated that AOB, NOB, AOA and Anammox bacteria exist in the leachate treatment plant. However, the removal of ammonia can be ascribed mainly to nitrification because AOB (1.5%) and NOB (11.3%) were predominant among all nitrogen-converting bacteria. The results of the phylogenetic analysis based on amoA and 16S rDNA gene revealed that the uncultured bacterium clone 4-24, Kuenenia stuttgartiensis genome fragment KUST_E and the uncultured Crenarchaeota clone NJYPZT-C1 belong to AOB, Anammox and AOA populations, respectively, and were the dominant species in their cluster.  相似文献   
73.
Anammox in a UASB reactor treating saline wastewater   总被引:1,自引:0,他引:1  
The feasibility of an anammox (anaerobic ammonium oxidation) UASB (upflow anaerobic sludge blanket) bioreactor to treat ammonium-rich brines was investigated in batch and continuous-flow experiments. The evidence from batch tests indicated that the anammox activity was significantly inhibited under highly saline conditions while the inhibition was reversible. Saline shock loading of 30 g NaCl l−1 caused a 67.5% decrease in specific anammox activity (SAA) compared to reference biomass (not exposed to salt). However, the acclimatized biomass displayed a SAA value just 45.1% lower than that of the reference biomass. When transferred from brine to freshwater, the salt-exposed biomass resumed its activity by 43.1%. Subsequent to appropriate acclimatization, careful manipulation nitrite concentration, nitrogen loading rate (NLR), and other operational parameters for 77 days, the results of continuous-flow experiment revealed that under the salinity of 30 g NaCl l−1 the reactor performed well and the substrate removal capacity (nitrogen removal rate, NRR, of 448 ± 15 mgl−1 d−1) was comparable to the condition of freshwater (NRR of 464 ± 13 mgl−1 d−1). However, the anammox UASB bioreactor was prone to malfunction under transient operating conditions.  相似文献   
74.
• The autotrophic nitrogen removal combining Feammox and Anammox was achieved. • Activated carbon can be used as an electron shuttle to enhance Feammox activity. • Fe(III) was reduced to Fe(II) and the secondary Fe(II) mineral (FeOOH) was obtained. • The iron-reducing bacteria and Anammox consortium was enriched simultaneously. Ferric iron reduction coupled with anaerobic ammonium oxidation (Feammox) is a novel ferric-dependent autotrophic process for biological nitrogen removal (BNR) that has attracted increasing attention due to its low organic carbon requirement. However, extracellular electron transfer limits the nitrogen transformation rate. In this study, activated carbon (AC) was used as an electron shuttle and added into an integrated autotrophic BNR system consisting of Feammox and anammox processes. The nitrogen removal performance, nitrogen transformation pathways and microbial communities were investigated during 194 days of operation. During the stable operational period (days 126–194), the total nitrogen (TN) removal efficiency reached 82.9%±6.8% with a nitrogen removal rate of 0.46±0.04 kg-TN/m3/d. The contributions of the Feammox, anammox and heterotrophic denitrification pathways to TN loss accounted for 7.5%, 89.5% and 3.0%, respectively. Batch experiments showed that AC was more effective in accelerating the Feammox rate than the anammox rate. X-ray photoelectron spectroscopy (XPS) analyses showed the presence of ferric iron (Fe(III)) and ferrous iron (Fe(II)) in secondary minerals. X-ray diffraction (XRD) patterns indicated that secondary iron species were formed on the surface of iron-AC carrier (Fe/AC), and Fe(III) was primarily reduced by ammonium in the Feammox process. The phyla Anaerolineaceae (0.542%) and Candidatus Magasanikbacteria (0.147%) might contribute to the Feammox process, and Candidatus Jettenia (2.10%) and Candidatus Brocadia (1.18%) were the dominative anammox phyla in the bioreactor. Overall, the addition of AC provided an effective way to enhance the autotrophic BNR process by integrating Feammox and anammox.  相似文献   
75.
• A full scale biofilm process was developed for typical domestic wastewater treatment. • The HRT was 8 h and secondary sedimentation tank was omitted. Candidatus Brocadia were enriched in the HBR with an abundance of 2.89%. Anammox enabled a stable ammonium removal of ~15% in the anoxic zone. The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems. Herein, a 300 m3/d hybrid biofilm reactor (HBR) process was developed and operated with a short hydraulic retention time (HRT) of 8 h. The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process. The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33% at Day 130 and then to 2.89% at Day 213. Based upon the activity of anammox bacteria, the removal of ammonia nitrogen (NH4+-N) in the anoxic zone was approximately 15%. This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone. The final effluent contained 12 mg/L chemical oxygen demand (COD), 0.662 mg/L NH4+-N, 7.2 mg/L total nitrogen (TN), and 6 mg/L SS, indicating the effectiveness of the HBR process for treating real domestic wastewater.  相似文献   
76.
考察了三价铁(2.24~7.84mg/L)存在下厌氧氨氧化系统对有机物的耐受性能,并通过16SrRNA高通量测序技术和定量PCR探究其机理.结果表明,进水COD浓度为50和100mg/L时,4个反应器的氨氮和总氮去除率均较高(>90%),三价铁的强化作用不明显;进水COD浓度继续升高(150和200mg/L),厌氧氨氧化受到抑制,三价铁的强化作用逐渐增加;COD浓度为200mg/L时,添加三价铁(7.84mg/L)可将氨氮和总氮去除率由61.3%和79.8%(对照组)提升至71.2%和84.7%.16SrRNA高通量测序技术表明,有机物存在下,污泥微生物群落结构出现变化,主要表现为厌氧氨氧化菌丰度的降低及反硝化菌群的大量增殖,进水添加三价铁可提高浮霉菌(Planctomycetes)的丰度.定量PCR结果表明,三价铁能够提高厌氧氨氧化菌16S rRNA及功能基因hzsB的丰度.  相似文献   
77.
反硝化生物膜启动厌氧氨氧化反应器的研究   总被引:29,自引:6,他引:23  
反硝化菌的生长快于厌氧氨氧化菌 ,通过培育反硝化生物膜 ,利用反硝化菌的基质多样性和代谢多样性 ,可使生物膜由催化反硝化反应过渡到催化厌氧氨氧化反应 ,加速Anammox反应器的启动 .经过 3个月的运行 ,Anammox反应器的容积总氮负荷达 0 14 3kg·m-3 ·d-1,总氮去除率约 86 5 2 % ,出水NH 4 N和NO-2 N均低于 1mg·L-1.NH 4 N去除量、NO-2 N去除量和NO-3 N生成量之间比例的变化以及污泥颜色的变化 ,可以指示Anammox反应器的启动进程 .  相似文献   
78.
● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system Anammox coupled FeS denitrification was responsible for NH4+/NO3 removal ● Sulfammox, Feammox and Anammox occurred for NH4+ removal Thiobacillus, Nitrospira , and Ca. Kuenenia were key functional microorganisms An autotrophic denitrifying bioreactor with iron sulfide (FeS) as the electron donor was operated to remove ammonium (NH4+) and nitrate (NO3) synergistically from wastewater for more than 298 d. The concentration of FeS greatly affected the removal of NH4+/NO3. Additionally, a low hydraulic retention time worsened the removal efficiency of NH4+/NO3. When the hydraulic retention time was 12 h, the optimal removal was achieved with NH4+ and NO3 removal percentages both above 88%, and the corresponding nitrogen removal loading rates of NH4+ and NO3 were 49.1 and 44.0 mg/(L·d), respectively. The removal of NH4+ mainly occurred in the bottom section of the bioreactor through sulfate/ferric reducing anaerobic ammonium oxidation (Sulfammox/Feammox), nitrification, and anaerobic ammonium oxidation (Anammox) by functional microbes such as Nitrospira, Nitrosomonas, and Candidatus Kuenenia. Meanwhile, NO3 was mainly removed in the middle and upper sections of the bioreactor through autotrophic denitrification by Ferritrophicum, Thiobacillus, Rhodanobacter, and Pseudomonas, which possessed complete denitrification-related genes with high relative abundances.  相似文献   
79.
● Four Ca. Brocadia species were observed during the spontaneously enrichment. ● Novel anammox species SW510 and SW773 dominated the full-scale ecosystem. ● Urease and cyanase genes were detected in the new anammox genomes. ● Functional differentiation potentially facilitated co-occurrence of anammox species. The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities. However, the functional potentials and ecological differentiation of cooccurring anammox species in complex ecosystems have not been well elucidated. Herein, by utilizing functional reconstruction and comparative genome analysis, we deciphered the cooccurring mechanisms of four Candidatus Brocadia species that were spontaneously enriched in a full-scale swine wastewater treatment system. Phylogenetic analysis indicated that species SW172 and SW745 were closely related to Ca. Brocadia caroliniensis and Ca. Brocadia sapporoensis, respectively, whereas the dominant species SW510 and SW773, with a total average abundance of 34.1%, were classified as novel species of the genus Ca. Brocadia. Functional reconstruction revealed that the novel species SW510 can encode both cytochrome cd1-type nitrite reductase and hydroxylamine oxidase for nitrite reduction. In contrast, the detected respiratory pentaheme cytochrome c nitrite reductase and acetate kinase genes suggested that SW773 likely reduced nitrite to ammonium with acetate as a carbon source. Intriguingly, the presence of genes encoding urease and cyanase indicated that both novel species can use diverse organic nitrogen compounds in addition to ammonia and nitrite as substrates. Taken together, the recovery and comparative analysis of these anammox genomes expand our understanding of the functional differentiation and cooccurrence of the genus Ca. Brocadia in wastewater treatment systems.  相似文献   
80.
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/( L. d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号