首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
环保管理   1篇
综合类   1篇
基础理论   9篇
污染及防治   16篇
评价与监测   5篇
  2022年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2011年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
11.
5-Hydroxymethylfurfural is found in several food commodities, including honey. Its concentration is used as one of honey's quality indicators since elevated 5-hydroxymethylfurfural levels indicate overheating and aging of the product. In this context, the European Commission and Codex Alimentarius established the maximum tolerable level for 5-hydroxymethylfurfural, for general type honeys intended for human consumption, at 40 mg kg?1. In this study, 5-hydroxymethylfurfural, 2-furfural, and the furfuralic derivative 5-methyl-2-furfural were investigated in Greek honey samples, through a high performance liquid chromatographic photo diode array mass spectrometric method developed and validated. Sample preparation was based on a modification of the ‘Quick, Easy, Cheap, Effective, Rugged, and Safe’ procedure. The method was sensitive, exhibiting limit of detection for 5-hydroxymethylfurfural at 0.1 mg kg?1, far below the permissible level of 40 mg kg?1. Levels of 5-hydroxymethylfurfural in 28 honey samples varied from 0.5 to 23.5 mg kg?1, thus, not worrying for consumers. Traces of 2-furfural were detected in limited samples.  相似文献   
12.
Dissipation behavior and hazard assessment of the fungicide fenhexamid applied to grapes were investigated under climatic conditions in Egypt. Fenhexamid residues were extracted from grape samples with ethyl acetate. The extract was cleaned up by QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, and determined by gas chromatographic method (GC-μECD). The average recoveries ranged between 94.2% and 99.4% with associated relative standard deviation not exceeding 12%. The estimated limit of quantification for fenhexamid was 0.1 mg/kg. The field results showed that fenhexamid dissipated rapidly from grapes and had a half-life of approximately 4.21 days. Hazard assessment was evaluated by using the hazard quotient (HQ). Data showed that the HQ value was significantly less than HQ = 1. Results indicate that hazard of fenhexamid use in grape even at 1.5-fold higher than recommended dosage was negligible to humans. This study could provide guidance for safe and reasonable use of fenhexamid in grapes and prevent health problems to consumers. However, further hazard assessment studies are needed to ascertain the hazard of fenhexamid residues on grape to vulnerable groups, including children, pregnant women, and elderly consumers.  相似文献   
13.
An efficient and sensitive method for simultaneous determination of 38 pesticides in agricultural drainage waters and soils has been developed and validated. Water samples were extracted using solid-phase extraction with C18 cartridges while solid samples (suspended particle matter and soil) were extracted by using the quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction method. The target pesticides were analyzed by using gas chromatography-mass spectrometry with electron impact ionization. The proposed method allowed a simultaneous determination and confirmation of a large number of pesticides in agricultural drainage waters, suspended particle matters and soils/sediments with a good reproducibility and low detection limits. The developed method was applied to a survey of pesticides in a vegetable growing area of Guangzhou, China. The pesticides commonly found in the area were butachlor, carbofuran, dichlorvos, fipronil, isocarbophos and pyridaben.  相似文献   
14.
Abstract

Tomatoes have been widely planted in greenhouses and fields in China. Soil-borne diseases are more harmful to tomatoes than other types of diseases. Dimethyl disulfide (DMDS) was used as a novel fumigant instead of methyl bromide to control soil-borne diseases. To assess the safety of DMDS for use on tomatoes, its dissipation and terminal residues were investigated at three different locations under greenhouse and open field conditions. The QuEChERS method was simplified using gas chromatography with mass spectrometry detection and combined with liquid-liquid extraction purification to allow determination of DMDS levels in both the tomatoes and the soil. The average recovery of the method was between 85.3 and 98.6%, with the relative standard deviation (RSD) ranging from to 1.9–10.3%. The dissipation and terminal residues of DMDS in the tomatoes and the soil were analyzed using the method, the results of which showed that the half-life of DMDS ranged from 0.3–6.5 d in the soil at three different locations. The terminal residues of DMDS in the tomatoes and the soil were not detected. This study provided data that the Chinese government can use to support appropriate and safe guidance for the use of DMDS on agriculture.  相似文献   
15.
This paper describes the application of liquid chromatography-tandem mass spectrometry (LC/MS-MS) for analysis of residues of forchlorfenuron (CPPU), a new plant growth regulator, in watermelons, after a sample preparation step based on the buffered Quick, Easy, Cheap, Effective, Rugged and Safe extraction method. Analytical determinations were carried out in a triple quadrupole system fitted with an electrospray interphase operating in the positive ionisation mode (ESI+). Three simultaneous MS-MS transitions of the quasi-molecular ion m/z 248 (precursor ion) were monitored for data adquisition (248 > 129, 248 > 155, and 248 > 248), using the transition 248 > 129 for quantitation. Recovery studies on watermelons at levels of 1–200 μ g/kg, performing five replicates at each level and using bracketing single-level calibration with matrix-matched standards for quantitation, gave forchlorfenuron mean recoveries ranging from 82 to 106% with relative standard deviations (RSD) lower than 18%. The limit of determination was established at 1 μ g/kg. The method was applied to evaluate the persistence of forchlorfenuron residues in watermelons grown in plastic greenhouses, after applying an individual spray treatment to the flower ovary at the anthesis stage (45 μ g/flower and 60 μ g/flower for cv “Extazy” and cv “reina de corazones” watermelons, respectively). One month after treatment, 20 “Extazy” watermelon units (1.5–2 kg/unit) and 20 “Reina de corazones” watermelon units (4–5 kg/unit) were collected and analyzed individually. None of the samples contained forchlorfenuron residues higher than 1 μ g/kg.  相似文献   
16.
The present study was conducted to determine pesticide (emamectin-benzoate, penconazole and imidacloprid) residues over tomatoes by using QuEChERS method. The method was validated by spiking tomato matrix at 0.1, 1.0, and 10.0 MRL levels of the pesticides. Tomatoes were harvested from two conventional and two Integrated Pest Management-grown fields. Laboratory samples were taken from the bulk samples. Analyses of spiked and real-field tomatoes were performed with QuEChERS procedure. Experimental samples were subjected to LC-MS/MS analysis. As indicated in “CAC/GL 40-1993,” representative sample matrix (apple) calibration was used for quantification. The overall recovery was 107.12% with a relative standard deviation of 17.96% (n?=?162). Present values were within the specified recovery ranges (60-140%) and repeatability value of (RSD ≤20%) of SANCO. Analysis of field experiment samples showed that both conventional tomato plots had trace levels (less than MRL) of emamectin-benzoate and imidacloprid, whereas there were not any pesticide residues in both IPM tomato plots  相似文献   
17.
A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup.

The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70–92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3–15%. For all compounds, good linearity (r2 > 0.99) was obtained over the range of concentration from 0.05 μ g/mL to 0.5 μ g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.  相似文献   
18.
Extraction and quantification of pesticide residue from the milk matrix at or below the established maximum residue limit (MRL) is a challenging task for both analytical chemists and the regulatory institutions to take corrective actions for the human health and safety. The main aim of the study is to develop a simple rapid and less expensive QuEChERS extraction and cleanup method for simultaneous analysis of 41 multiclass pesticide residue in milk by gas chromatography-electron capture detector (GC-ECD), followed by confirmation of the residues with gas chromatography-mass spectrometer (GC-MS). Effect of sorbent type, temperature, spiking concentration, matrix effect (ME), measurement uncertainty (MU), inter- and intra-assay repeatability, reproducibility of recovery, and trueness of the results were investigated to validate the effectiveness of the method. Limit of determination (LOD) and limit of quantitation (LOQ) for all the analytes ranged within 0.001–0.02 and 0.002–0.05 µg mL?1, respectively. The % recovery of all the pesticides ranged between 91.38 and 117.56% with relative standard deviation (RSD) below 2.79%. The MU for all the analytes was ≤29% of respective LOQs, and except for few pesticides, the ME was largely negative. The method fulfilled all the SANTE guidelines and thus can be extended for routine analysis of multiclass pesticide residue in milk.  相似文献   
19.
A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy–precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01–1.0 μg mL?1 for OCs and OPs and 0.05–2.5 μg mL?1 for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70–120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg?1, and the LOQs were determined as 0.01-0.049 mg kg?1. The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India.  相似文献   
20.
基于Qu ECh ERS提取方法,用液相色谱-串联质谱法测定水中14种常见除草剂,通过优化样品前处理条件,使14种除草剂在0.005 mg/L~0.500 mg/L范围内线性良好,相关系数均0.99,方法检出限为0.005 mg/L。空白水样3个质量浓度水平的加标回收率为74.5%~109%,5次测定结果的RSD为3.9%~11.4%。将该方法用于测定长江流域3个重点城市的水体,结果为未检出。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号