首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
环保管理   18篇
综合类   12篇
基础理论   10篇
污染及防治   4篇
社会与环境   3篇
灾害及防治   1篇
  2023年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有50条查询结果,搜索用时 46 毫秒
31.
三种典型的污泥发电工艺   总被引:2,自引:0,他引:2  
污泥发电是城市污水处理厂进行污泥合理开发利用的技术措施之一,是污泥实行减量化、稳定化、无害化、资源化的良好方法,本文介绍了3种典型的污泥发电工艺:污泥焚烧发电;污泥厌氧消化产生沼气、通过燃气轮机组发电;污泥厌氧消化产生沼气、进而通过改质制造氢气,经燃料电池发电。对污泥合理利用的规范化、科学化有一定的借鉴意义。  相似文献   
32.
I examine whether electricity prices influence the likelihood that consumers purchase high efficiency appliances by using state-year panel data on electricity prices and the proportion of sales of new appliances that involve high efficiency “Energy Star” models. I find no evidence that electricity prices affect the propensity for consumers to choose high efficiency appliances. Point estimates are extremely small and precisely estimated. The findings suggest that price-based energy policies may be limited in the extent to which they increase investment in residential energy efficiency, which has been considered one of the lowest cost opportunities for reducing carbon emissions.  相似文献   
33.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   
34.
● A novel hybrid fuel cell (F-HFC) was fabricated. ● Pollutant degradation and synchronous electricity generation occurred in F-HFC. ● BiOCl-NH4PTA photocatalyst greatly improved electron transfer and charge separation. ● Pollutant could act as substrate directly in ambient conditions without pretreatment. ● The mechanism of the F-HFC was proposed and elucidated. The development of highly efficient energy conversion technologies to extract energy from wastewater is urgently needed, especially in facing of increasing energy and environment burdens. Here, we successfully fabricated a novel hybrid fuel cell with BiOCl-NH4PTA as photocatalyst. The polyoxometalate (NH4PTA) act as the acceptor of photoelectrons and could retard the recombination of photogenerated electrons and holes, which lead to superior photocatalytic degradation. By utilizing BiOCl-NH4PTA as photocatalysts and Pt/C air-cathode, we successfully constructed an electron and mass transfer enhanced photocatalytic hybrid fuel cell with flow-through field (F-HFC). In this novel fuel cell, dyes and biomass could be directly degraded and stable power output could be obtained. About 87 % of dyes could be degraded in 30 min irradiation and nearly 100 % removed within 90 min. The current density could reach up to ~267.1 μA/cm2; with maximum power density (Pmax) of ~16.2 μW/cm2 with Rhodamine B as organic pollutant in F-HFC. The power densities were 9.0 μW/cm2, 12.2 μW/cm2, and 13.9 μW/cm2 when using methyl orange (MO), glucose and starch as substrates, respectively. This hybrid fuel cell with BiOCl-NH4PTA composite fulfills the purpose of decontamination of aqueous organic pollutants and synchronous electricity generation. Moreover, the novel design cell with separated photodegradation unit and the electricity generation unit could bring potential practical application in water purification and energy recovery from wastewater.  相似文献   
35.
煤矸石和粉煤灰pH与电导率动态变化规律及其相关性研究   总被引:8,自引:0,他引:8  
煤矸石和粉煤灰是煤矿区两种常见的固体废弃物,对环境造成极大的污染。pH波动幅度大是废弃物农用治理的主要障碍之一。对两种废弃物连续浸提时的pH和电导率(EC)进行长期动态监测,结果表明,不同层次的煤矸石尽管风化程度不同,但经过长时间浸取后,pH和EC变化趋势相似,且煤矸石、粉煤灰的pH、EC值有很大的相关性。该试验为今后两种废弃物合理利用奠定了基础。  相似文献   
36.
Abstract

This study deals with the estimation of electricity production from hydraulic and thermal sources using the Genetic Algorithm (GA) with time series (TS) approach. Two forms of the mathematical models are developed, of which one is exponential and the second is polynomial. The power form of the Genetic Algorithm-Time Series (GATS) model is used for the thermal electricity production. The polynomial form of the GATS is used for the electricity production from the hydraulic sources. The GATS weighting parameters are obtained by minimizing the Sum of Squared Error (SSE) between observed and estimated electricity production from both sources. Therefore, the fitness function adapted is the minimization of the SSE for use in the GA process. The application of the GATS model is correspondingly presented. Some future scenarios are made to increase the electricity production from hydraulic sources. Variations of the electricity production from thermal and hydraulic energy sources are analyzed. Future prospects of electricity production are dealt with in terms of policy changes. The GATS models are used for making scenarios for future electricity planning policy. Results also show if current trend continues, the thermal electricity production amounts to 75% of the total electricity production, which is undesirable for environmental concerns. Results also shows that if new policy is to move from the thermal to hydraulic electricity production, the hydraulic sources will meet the demand until 2020.  相似文献   
37.
The present article uses the Autoregressive Distributed Lag (ARDL) bounds testing procedure to identify the impact of immigration and economic growth on electricity consumption in the case of North Cyprus using annual data from 1977 to 2007. The results suggest that both economic growth and immigration are in a long-run equilibrium relationship with electricity consumption.  相似文献   
38.
We investigate the efficiency and environmental impacts of electricity market restructuring by examining changes in fuel efficiency, cost of coal purchases, and utilization among coal-fired power plants based on a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a 1.4 percent improvement in fuel efficiency, (2) an 8 percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. The estimates imply that restructuring has led to nearly 15 percent savings in operating expenses and up to 7.5 percent emissions reduction among these plants.  相似文献   
39.
Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km3 to an increase of more than 160,000 km3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types.  相似文献   
40.
The alteration of physico-chemical properties of sediment organic matter (SOM) incubated under current-harvesting conditions as well as no-current producing conditions over 120 days using sediment microbial fuel cell systems was examined. The SOM was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that SOM around the electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, along with its partial degradation and electricity generation compared to that for the original sediment. These changes in SOM properties were analogous to those commonly observed in the early stages of the SOM diagenetic process (i.e. humification). Such a humification-like process was evidently more stimulated when electrical current was produced than no-current condition. These new findings associated with microbially-catalyzed electricity generation may present a potential for the energy-efficient remediation, monitoring, and/or management of the geo-environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号