首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   57篇
  国内免费   103篇
安全科学   33篇
废物处理   19篇
环保管理   239篇
综合类   441篇
基础理论   216篇
污染及防治   476篇
评价与监测   240篇
社会与环境   61篇
灾害及防治   15篇
  2024年   2篇
  2023年   12篇
  2022年   14篇
  2021年   28篇
  2020年   49篇
  2019年   21篇
  2018年   41篇
  2017年   27篇
  2016年   42篇
  2015年   51篇
  2014年   47篇
  2013年   110篇
  2012年   87篇
  2011年   181篇
  2010年   104篇
  2009年   177篇
  2008年   159篇
  2007年   125篇
  2006年   72篇
  2005年   42篇
  2004年   34篇
  2003年   45篇
  2002年   34篇
  2001年   24篇
  2000年   36篇
  1999年   19篇
  1998年   16篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1740条查询结果,搜索用时 218 毫秒
141.
142.
2 semiarid irrigated area with salt-affected soils. The available soil map is at 1:100,000 scale and its mapping units are used for the land evaluation with the FAO framework. These data are then elaborated using the index value method. This procedure gives a map of land evaluation units and a table that rates the productive potential of these units for six crops: alfalfa, barley, maize, rice, sunflower, and wheat.  相似文献   
143.
The ForSAFE model, designed for modelling biogeochemical cycles (water, acidity, base cation, nitrogen and carbon) in terrestrial ecosystems, was modified with a vegetation response module (VEG), incorporating the effects of: nitrogen pollution, acidification, soil moisture, temperature, wind chill exposure, light and shading by trees, grazing by animals, competition between plants, above ground for light and below ground for water and nutrients. The model calculates the response of number ground vegetation plant groups. The integrated model was tested and validated at integrated level II forest monitoring sites across Sweden, four have been shown here, and used to assess the effect of acidification and nitrogen pollution in relation to factors such as climate change, forest management and changing grazing pressure. The response functions have been derived from single-factor experiments and integrated through the model structure for use on whole systems. The tests with the model suggest that the ground vegetation composition is reasonably well predicted, that much research remains before the model is fully tested and operational, and that the model may serve as a tool for assessing impacts of climate change, acid rain and forest management on plant biodiversity in forested areas.  相似文献   
144.
针对南充市区土壤重金属污染片区的分类结果,为了判断其有效性,应用多类Fisher判别法,建立了南充市区土壤重金属污染评价的Fisher模型。通过检验,模型具有显著的判别效果,因而该模型可被用于判断环境评价分类结果的有效性。  相似文献   
145.
Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue ofPaphia sp. (clam);Scopimera intermedia (crab);Chaetomorpha brychagona (green alga);Enteromorpha crinita (green alga); andNeyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.  相似文献   
146.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   
147.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N‐viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co‐compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot? 1 for each amendment (equivalent to 50 t ha? 1 of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3‐N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3‐N and inorganic P concentration significantly compared with the non‐legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3 ? could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co‐compost and biosolids, but decreased by coal ash and N‐viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3‐N to increase by about 7 fold, and that of inorganic P by about 23% over the non‐legume. Regarding the metals, biosolids, N‐viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co‐compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   
148.

Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4 +, NO3 ?, and NO2 ? nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4 +-N in a 1-day sample, which continued until 90 days. Some declines in NO3 ?N were found from 15 to 60 days. Along with this decline, significant increases in NO2 ?N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3 ?N and the decline in NH4 +NO2 ?-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4 +-N, NO2 ?-N and nitrate reductase activity and some adverse effects on NO3 ?N between 15 and 90 days.  相似文献   
149.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Aside from total organic carbon, the ratio among the different organic matter fractions [dissolved organic matter, fulvic acid (FA), humic acid (HA) and humin] can also affect the mobility of these hydrocarbons in soils. In this study the effect of the whole organic carbon pool has been compared with that of HA and FA on the translocation of four PAHs (biphenyl, fluorene, phenanthrene and pyrene) in soil columns. Oxidized and untreated soil columns with and without HA or FA, were prepared, spilled with hydrocarbons and leached with a 0.01 M CaCl2 solution. The influence of HA and FA on PAH translocation was investigated through determinations of the PAH contents and total organic carbon (TOC) in the layers of the columns. All molecules were moved vertically by the percolating solutions, their concentrations decreasing with depths. The non-oxidized soil tended to retain more PAHs (96%) than the oxidized one (60%), confirming that organic matter plays an important role in controlling PAH leaching. The whole organic matter pool reduced the translocation of pollutants downward the profile. The addition of HA enhanced this behaviour, by increasing the PAH retention in the top layers (7.55 mg and 4.00 mg in the top two layers, respectively) while FA increased their mobility (only 2.30 and 2.90 mg of PAHs were found in the top layers) and favoured leaching. In fact, in the presence of HA alone, the higher amounts of PAHs retained at the surface and the good correlation (r2=0.936) between TOC and hydrocarbon distribution can be attributed to a parallel distribution of PAHs and HA, while in the presence of FA, the higher mobility of PAHs can be attributed to the high mobility of the humic material, as expected by its extensive hydrophilic characteristics.  相似文献   
150.
Abstract

Aldicarb, Temik® 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredent)/ha and carrots (Caucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/ 50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 6l to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot > in soil > in hydroponic solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号