首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   15篇
  国内免费   36篇
安全科学   28篇
废物处理   1篇
环保管理   13篇
综合类   124篇
基础理论   20篇
污染及防治   12篇
评价与监测   27篇
社会与环境   3篇
灾害及防治   2篇
  2024年   2篇
  2023年   15篇
  2022年   11篇
  2021年   10篇
  2020年   10篇
  2019年   14篇
  2018年   11篇
  2017年   1篇
  2016年   11篇
  2015年   4篇
  2014年   18篇
  2013年   12篇
  2012年   10篇
  2011年   15篇
  2010年   6篇
  2009年   4篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   13篇
  1989年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有230条查询结果,搜索用时 23 毫秒
41.
釜溪河为沱江一级支流,在自贡城区段设有国考碳研所断面。收集碳研所断面近10年来水质自动站数据,分析溶解氧(DO)变化特征,采样调查釜溪河自贡城区段水质及河道底泥污染状况,采用相关性分析、数值模拟等,研究分析釜溪河自贡城区段溶解氧分布特征及碳研所断面季节性低氧成因。研究结果表明,碳研所断面的溶解氧质量浓度变化特征呈现春末夏初最低,白天高晚上低的特征。釜溪河碳研所断面河水耗氧类污染物质量浓度较沱江流域内其他断面高,耗氧强度较大,溶解氧质量浓度较沱江流域其他断面偏低;其次,研究河段中釜溪河污水厂以下河段受污水厂低氧水排入和金子凼堰底层低氧水下泄影响,其溶解氧水平整体较污水厂以上河段低;最后,河段底泥有机质含量较高,春夏季气温升高将导致微生物分解活性增强大量消耗溶解氧,同时,闸坝和外来水体排入的水文扰动造成污水厂以下河段水温梯度弱,表层溶解氧易受底层低氧水影响,促使断面形成季节性低氧现象。溶解氧预测模型结果也进一步证实了温度变化和垂向温度梯度弱是碳研所断面溶解氧质量浓度季节性偏低的主要因素。  相似文献   
42.
基于反距离加权插值法评价海域水质类别空间分布   总被引:2,自引:1,他引:1  
空间插值技术可以对污染物分布状况进行面状连续表征,是对点位法评价的有效补充。笔者根据现行海水水质评价方法,类比给出近岸海域水质类别空间分布评价的流程:单指标空间插值-单指标水质分类-多指标水质类别判定。研究了反距离加权插值参数的选取方法,并以点位密度不同的全国近岸海域(开放型)和渤海海域(近封闭型)为例进行了插值实验。 结果表明:对目前的点位分布情况而言,全国近岸海域参数设为p=3,N=4, C=200m较为适宜;渤海海域参数为p=2,N=5,C=200m较为适宜。反距离加权插值法在开放海域的拟合效果要优于近封闭海域。  相似文献   
43.
传统的张承地区脱贫政策和生态政策在各自发挥一定作用后,开始出现了碰撞和矛盾,困扰了该地区社会经济发展,有必要改变传统观念和生产模式,从生态产品理论和政策的角度来分析问题。  相似文献   
44.
生物扰动对沉积物性质的改变已越来越受国际地圈生物圈计划的关心.通过高密度电阻率法和示踪剂相结合的方法,监测了室内模拟黄河口生物洞穴影响非饱和粉土的渗流.从入渗的电剖面特征分析,发现渗流主要发生在生物洞穴形成的大孔隙通道中,而周围基质中的渗流很弱,即黄河口粉土的生物洞穴中存在优势流.优势流在细粒土的垂直迁移中有重要作用,同时也改变了大孔隙周围土体的基本性质,如密度、含水量、强度、颗粒组成以及电导率等.优势通道在入渗过程中可增加周围土体的含水量,但在排水的过程中也可增加周围土体的排水能力,具有增水和排水的双重效应.  相似文献   
45.
通过使用气相色谱质谱仪(GC/MS)和SIM/SCAN同时扫描的方式对比分析了机动车使用的汽油和柴油的主要成分及主要有机污染物的组成种类及比例。研究结果表明,机动车燃油中检测出多种挥发性和半挥发性有机污染物,这些污染物中多为中国优先控制的空气有害物质;汽油中含有较多的苯系物类和多环芳烃类有机污染物,柴油中主要含有烷烃类和多环芳烃类有机污染物。  相似文献   
46.
饮用水传统净化方法研究进展   总被引:2,自引:0,他引:2  
介绍了常规饮用水净化工艺中混凝环节使用的无机絮凝剂、有机絮凝剂和天然高分子絮凝剂和氯化消毒的主要特点,提出了减少其有毒负产物的方法,并对O3、ClO2消毒等较先进的消毒方法进行论述,以及深度处理中的活性炭吸附的不同使用方法效率特点进行介绍.  相似文献   
47.
电镀废水中低浓度重金属离子的处理普遍采用混凝沉淀法,由此产生了大量重金属污泥,其安全处置过程复杂且成本较高.基于此,本文研究了一种资源化回收电镀废水中低浓度镍离子(Ni~(2+))和锌离子(Zn~(2+))的方法.结果表明,电镀废水经过铁盐混凝后,产生的沉淀溶解于硝酸中,得到硝酸溶解液中Ni~(2+)和Zn~(2+)浓度分别高达2.3 g·L~(-1)和1.5 g·L~(-1),而杂质铁(Fe~(3+))浓度为12.2 g·L~(-1).将硝酸溶解液直接进行水热处理,溶液中Ni~(2+)和Zn~(2+)浓度不变,残留铁浓度为1.76 g·L~(-1).向硝酸溶解液中添加乙酰丙酸(C_5H_8O_3)后进行水热处理,Ni~(2+)和Zn~(2+)浓度依然不变,但溶液中残留铁浓度仅为0.78 mg·L~(-1).硝酸溶解液中铁的去除主要源于水热条件下铁的水解和缩聚转化为高结晶度的赤铁矿.添加乙酰丙酸能够同时降低溶液中NO~-_3浓度和提升pH值,促进溶液中铁的水解和缩聚.  相似文献   
48.
焦化废水中含有大量的氰化物(CN-)和硫氰化物(SCN-)等有毒有害污染物,在预处理过程中,一般采用硫酸亚铁(FeSO4)混凝沉淀去除硫化物(S2-)、油分、悬浮物并降低废水毒性。上述过程同时会形成亚铁氰化物([Fe(CN)6]4-),[Fe(CN)6]4-再与Fe3+形成亚铁氰化铁沉淀(普鲁士蓝,Fe4[Fe(CN)6]3),干扰硫氰酸铁(Fe(SCN)3)分光光度法对SCN-检测的准确性。为解决上述问题,提出在SCN-显色前加入硫酸锌(ZnSO4)的方法,屏蔽过量的[Fe(CN)6]4-,并分析ZnSO4对SCN-检测的影响程度。结果表明:Fe(SC...  相似文献   
49.
以Bi(NO33·5H2O、KI和g-C3N4为前驱体,采用常温沉淀法制备Bi5O7I/g-C3N4Z型异质结复合光催化剂,表征其光吸收性能、微观形貌、光生电子-空穴的分离效率等特性,研究新型光催化剂对RhB的可见光催化降解性能,探讨其可见光催化过程活性基团种类以及作用机理.结果表明:利用沉淀法合成Bi5O7I/g-C3N4的条件为:Bi(NO33·5H2O、KI和g-C3N4的投加量分别为4.85g、1.66g和1.61g,乙二醇的用量为50mL,反应液的pH值为12,反应搅拌速度为200r/min,反应温度为25℃.Bi5O7I/g-C3N4异质结无杂相生成且纯度高,异质结复合发生在g-C3N4的(002)晶面和Bi5O7I的(203)晶面,但g-C3N4和Bi5O7I的化学结构未受影响.Bi5O7I/g-C3N4呈三维纳米花瓣形貌结构,为光生电子-空穴的迁移提供了大量的接触位点.Bi5O7I的g-C3N4掺杂改性使其光催化活性显著增强,其光吸收边缘由425nm红移至462nm,Bi5O7I/g-C3N4的能带排列结构与Z型异质结匹配,促进了光生电子-空穴的分离.其光电流密度(11.5mA/cm)约为g-C3N4和Bi5O7I对应值的2.66倍和1.47倍.Bi5O7I/g-C3N4对罗丹明B的可见光催化降解率为93.9%,显著高于g-C3N4(58%)和Bi5O7I(49.7%)的降解效果,其光催化氧化活性主要来自羟基基团、超氧基团和光生空穴等中间态自由基.  相似文献   
50.
目的 探索一种航空发动机燃油系统附件低温试验方法.方法 梳理对比国内外航空发动机燃油系统附件低温试验方法的差异,分析国内外标准规定的试验温度差异的来源,检测3号喷气燃料的实际低温特性,验证?51℃的试验温度对3号喷气燃料的不适用性.分析航空发动机系统附件低温工作时会升温的特点,提出尽量模拟起动过程的低温试验方法.结果 利用提出的试验方法,在环境温度为?55℃、燃油温度为?40℃下,进行了135 h低温试验,额外单独进行1000次模拟发动机低温起动过程.试验过程中,某型主燃油泵调节器工作正常,并随某航空发动机通过了某飞机在我国北方某机场的高寒试飞试验.结论 GJB 241A规定的燃油温度?51℃或黏度12 mm2/s对应的温度(?56℃)不适用于3号喷气燃料,环境温度为?55℃,燃油温度为?40℃,并尽量模拟发动机低温起动过程的低温试验方法能够有效验证航空发动机燃油系统附件的低温工作能力.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号