首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   7篇
  国内免费   36篇
环保管理   1篇
综合类   53篇
基础理论   3篇
评价与监测   2篇
  2024年   3篇
  2023年   5篇
  2022年   13篇
  2021年   6篇
  2020年   11篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
51.
利用挥发性有机物(VOCs)在线监测数据对新冠肺炎疫情(COVID-19)期间(2019年12月25日~2020年2月24日)雄安地区环境空气中VOCs进行监测,探讨了疫情防控前、后VOCs的变化特征、臭氧生成潜势及来源解析.结果表明,疫情防控后φ(TVOCs)平均值为45.1×10-9,约为疫情防控前φ(TVOCs)...  相似文献   
52.
为研究石家庄市挥发性有机物(VOCs)的化学特征和污染来源,于2017年3月至2018年1月取3个国控点进行环境VOCs的罐采样及分析,并结合臭氧(O3)及气象数据进行相关性分析,采用正交矩阵因子模型(PMF)开展溯源解析;为确定夏季O3的污染周期,利用小波分析研究其时序特征.结果表明,石家庄市采样期间VOCs浓度为(137.23±64.62)μg·m-3,以卤代烷烃(31.77%)、芳香烃(30.97%)和含氧VOCs(OVOCs,23.76%)为主.采样期间VOCs的季节变化为:冬季(187.7 μg·m-3) > 秋季(146.8 μg·m-3) > 春季(133.24 μg·m-3) > 夏季(107.1 μg·m-3),空间特征呈自西向东逐渐增加的格局.监测期内O3与VOCs、NO2呈显著负相关,与温度、日照时数、风速和能见度呈正相关.在夏季O3≤ 160 μg·m-3时,6月应关注气温开始上升后4~5 d的气象条件变化,而7~8月需关注7~8 d后的气象变动.PMF溯源解析了6个VOCs的来源,依次为:汽油车排放源(24.78%)、柴油车排放源(24.69%)、溶剂使用源(18.64%)、化工生产排放源(11.87%)、区域背景(10.84%)及制药工业生产排放源(9.17%);其中汽油车和柴油车排放源的O3生成潜势(OFP)贡献(54.98%)超过一半.因此,石家庄市夏季O3削减的关键是控制交通及工艺过程源的排放.  相似文献   
53.
郑州市春季大气挥发性有机物污染特征及源解析   总被引:2,自引:10,他引:2  
对2018年春季郑州市5点位进行环境大气挥发性有机物(VOCs)罐采样及组分分析,开展其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和来源解析研究.结果表明,郑州市春季VOCs体积分数为(30. 66±13. 60)×10-9,烷烃占比最高(35. 3%),其次为OVOCs(25. 3%)、卤代烃(24. 1%)、芳香烃(10. 0%)和烯烃(5. 2%);总OFP为195. 53μg·m-3,烷烃、烯烃、芳香烃、卤代烃和OVOCs贡献率分别为25. 6%、17. 8%、38. 9%、5. 8%和11. 9%;总AFP为0. 95μg·m-3,芳香烃贡献率最高(87. 6%),其次为烷烃(12. 4%);秦岭路和经开区点位正戊烷、异戊烷、苯和甲苯受机动车影响较大,郑州大学点位主要受燃烧源影响;源解析显示机动车尾气及LPG挥发、溶剂使用源、工业过程源、区域老化气团和植物源对采样期间VOCs浓度贡献依次是30. 5%、27. 3%、22. 1%、14. 4%和5. 7%.  相似文献   
54.
为研究典型物流城市临沂市冬季重污染天气过程中PM_(2.5)化学组分特征,探讨污染成因,于2016年12月~2017年1月在6个采样点连续采集28 d的PM_(2.5)样品,并对其离子、元素、碳组分进行分析.采样期间PM_(2.5)质量浓度均值(145. 2±87. 8)μg·m~(-3),日均值超标率为82%; 2次污染过程中PM_(2.5)均值浓度分别为(187. 3±79. 8)μg·m~(-3)和(205. 3±92. 0)μg·m~(-3),为《环境空气质量标准》(GB 3095-2012)年均二级标准的5. 4和5. 9倍.化学组分质量重构结果显示二次无机离子(SNA)是冬季PM_(2.5)的主要组分(所占质量分数为51. 2%),其次为有机物OM(23. 8%),再次为矿物尘MIN(12. 7%).结合污染过程中化学组分的变化趋势和累积速率发现,第1个污染过程中SNA和OM是引起PM_(2.5)浓度增加的原因之一,第2个污染过程中SNA是导致污染的主因,硫氧化率(SOR)、氮氧化率(NOR)和OC/EC比值的日均变化趋势进一步验证了该结论. PMF源解析结果表明,临沂市冬季大气PM_(2.5)的首要源类为二次颗粒物和生物质燃烧混合源(分担率50. 0%),其次为燃煤源(16. 8%)、机动车(12. 9%)和城市扬尘(10. 0%),再次为工业源(5. 3%)和土壤尘(5. 0%). 2次污染过程中二次颗粒物的贡献较之冬季平均有明显增加,说明不利气象条件下二次颗粒物的生成、累积是导致重污染期形成的主因.  相似文献   
55.
广州市冬季一次典型臭氧污染过程分析   总被引:1,自引:1,他引:0  
裴成磊  谢雨彤  陈希  张涛  邱晓暖  王瑜  王在华  李梅 《环境科学》2022,43(10):4305-4315
为探究广州市2020年冬季(1月)一次臭氧污染过程,分析了气象条件对臭氧污染产生的影响;运用臭氧生成潜势(OFP)和正交矩阵因子分解法(PMF)分析了影响臭氧的主要挥发性有机物(VOCs)物种和来源;通过经验动力学建模方法(EKMA)识别了臭氧生成控制区,并提出了相应的前体物减排策略.结果表明,本次臭氧污染过程中同时出现了NO2超标,并且PM10和PM2.5浓度也处于高位,体现出和夏、秋季不同的大气复合污染特征;夜间边界层高度低(<75 m)和大气稳定度高加剧了臭氧前体物和颗粒物的累积,日间温度升高约5℃、太阳辐射增强约10%和水平风速小(<1 m ·s-1)等气象条件加剧了光化学反应,促进了臭氧和颗粒物的生成.冬季VOCs组分以烷烃为主(占比为68.2%),且烷烃和炔烃占比较其他季节更高,但芳香烃(二甲苯和甲苯)和丙烯是臭氧生成的关键VOCs物种;源解析结果显示,VOCs的主要来源为汽车尾气(22.4%)、溶剂使用(20.5%)和工业排放(17.9%),其中溶剂使用的OFP最高;臭氧本地生成主要受VOCs控制,前体物VOCs和NOx按比例3 :1进行削减较为合理.研究探索了冬季臭氧污染的成因,为开展重污染季节O3和PM2.5协同控制提供科学支撑.  相似文献   
56.
为探究港口地区污染大气中多环芳烃(PAHs)的污染特征和潜在来源,以青岛港为研究对象,于2018年8月至2019年5月期间采集了4个季节的PM2.5样品(n=59),分析了PM2.5中PAHs的季节变化和组成特征,使用相关性分析探索了气象因素对PAHs浓度的影响,并采用正定矩阵因子分解和潜在来源贡献函数模型对潜在来源进行解析.结果表明,ρ(PAHs)平均值为(8.11±12.31) ng·m-3,秋冬季节高于春夏季节.PAHs的季节性分子组成相似,以4~5环PAHs (75.43%)为主.荧蒽、苯并[e]芘、苯并[a]蒽、菲、芘和䓛是研究区域PAHs的优势物种,这与船舶尾气中主要化合物组成相似.相关性分析表明,PAHs浓度与温度和相对湿度呈极显著负相关,与大气压和风向呈极显著正相关,与风速的相关性较差.PMF分析提取出6个贡献因子,结果表明,青岛港地区受航运排放(28.83%)影响最大,其次是机动车排放(20.49%)以及原油挥发(13.47%)等,夏季受航运排放影响最大.PSCF结果表明,京津冀、环渤海和鲁北地区是远距离传输的主要来源区域.  相似文献   
57.
大气羰基化合物在对流层大气化学中发挥着重要作用,其受到直接排放和二次生成的共同影响,来源研究面临挑战.本研究基于2017年3月在南京市开展的羰基化合物观测,分别利用源示踪物比例法(STR)和正交矩阵因子模型(PMF)对羰基化合物进行来源解析,并将二者结果进行比较,以探讨导致来源解析不确定性的因素.本研究共检测出11种羰基化合物,总体积分数范围为2.57×10-9~22.83×10-9,其中甲醛、乙醛和丙酮是主要组分,分别占羰基化合物总平均体积分数的36.8%、21.6%和18.5%.通过比较乙炔和甲苯作为示踪物时,以及第5和第10百分数作为背景体积分数时解析结果的差异,探讨了示踪物选取和背景体积分数对STR解析结果的影响.PMF解析出了交通排放源、石化化工源、涂料与溶剂使用源、二次生成及背景源和化工源这5类源.二次生成及背景源是羰基化合物最主要的来源,对甲醛、乙醛和丙酮的贡献分别为56.4%、48.2%和58.3%.STR和PMF解析结果的比较发现,STR法依赖于示踪物的选取,在VOCs来源复杂地区应用时需要进行严格评估.  相似文献   
58.
使用大气挥发性有机物(VOCs)在线连续自动监测系统,对滕州市木石镇2019年11月环境空气中VOCs进行观测,并分析了VOCs的浓度状况、组成特征、光化学影响和来源。结果表明:观测期间,木石镇大气中TVOC平均体积分数为(32.75±28.96)×10-9,各物种体积分数从大到小顺序依次为烷烃>烯烃>OVOC>芳香烃>卤代烃>乙炔>含硫化合物;日变化规律呈双峰型,峰值在6:00~7:00时与0:00~1:00时出现。大气VOCs的平均臭氧生成潜势(OFP)为102.02×10-9,烯烃对臭氧生成潜势贡献率最大,为69.5%;乙烯、丙烯、正丁烯、萘和1,3-丁二烯等是臭氧生成潜势较高的物种。对OH自由基消耗速率(LOH)贡献最大的为烯烃,其次为芳香烃,两者贡献率占到76.8%。VOCs对二次气溶胶(SOA)浓度的贡献值为0.85μg/m3,其中芳香烃对SOA生成贡献占比为92.8%,对SOA生成贡献最大的前5个物种为萘、甲苯、苯、乙苯、间/对二甲苯。利用PMF模型...  相似文献   
59.
2013年4月在广州市区对大气中挥发性有机化合物(VOCs)进行了观测,对其变化特征和来源进行了分析。结果表明,观测期间测得的VOC总平均混合比为41.35×10~(-9),表现为烷烃芳香烃烯烃炔烃;利用PMF解析出观测时段内影响广州市区的9个VOCs主要来源,各源占比情况依次为:LPG排放老化VOC汽油挥发石化、未知源汽油车排放油漆溶剂柴油车排放天然源;与机动车相关和工业相关的来源分别占到了大气VOCs的46.8%和21.0%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号