首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   11篇
  国内免费   15篇
安全科学   48篇
废物处理   2篇
环保管理   2篇
综合类   43篇
基础理论   7篇
污染及防治   19篇
评价与监测   3篇
社会与环境   5篇
灾害及防治   2篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   13篇
  2019年   16篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
排序方式: 共有131条查询结果,搜索用时 203 毫秒
71.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源.  相似文献   
72.
易利用态有机碳是土壤微生物的重要碳源,影响土壤有机碳的矿化和累积过程,而易利用态碳源的输入量尤其是相对于土壤微生物生物量碳的不同输入负荷,对土壤有机碳的矿化影响机制尚不明确.因此,本研究采取室内模拟培养实验,选择不同浓度梯度添加[0. 5、1、3、5倍微生物量碳(MBC)]~(13)C-葡萄糖,分析葡萄糖-C的矿化特征及其激发效应.结果表明,葡萄糖-C矿化率随着外源碳添加量的增加而显著增加;葡萄糖-C向快库、慢库分配的比例也分别与碳添加量呈指数关系(R~2=0. 99,P 0. 05和R~2=0. 99,P 0. 05).在高添加量处理(3×MBC、5×MBC)中,葡萄糖的添加抑制土壤原有有机碳的矿化,即表现出负激发效应;而在低添加量处理(0. 5×MBC、1×MBC)中,表现为正激发效应,60 d培养结束后累积激发效应分别为160. 0 mg·kg~(-1)和325. 1 mg·kg~(-1).相关性分析结果表明在培养实验前期,累积激发效应主要受MBC、MBN和DOC的影响,而在后期主要β-葡糖苷酶、几丁质酶和铵态氮的影响.因此,稻田土壤有机碳矿化和激发效应与易利用态有机碳添加的碳负荷密切相关,并通过微生物量和酶活性调控土壤碳的矿化过程.本研究对于揭示稻田有机碳累积行为与推动农业可持续发展具有重要的科学意义.  相似文献   
73.
为了强化UASB反应器对厌氧+好氧反应器末端出水的生物处理过程,采用厌氧+好氧反应器+UASB反应器工艺,通过生物处理方法实现了难降解有机物与氮的协同削减.结果表明:①通过控制UASB反应器中ρ(NOx--N),优化微环境中最佳ORP范围,当ORP为(-300±10)mV时,ρ(CODCr)(此时主要以胡敏酸和富里酸等难降解的腐殖性有机物为主)由313.00 mg/L降至106.00 mg/L,ρ(TN)由139.60 mg/L降至60.30 mg/L,去除率分别达66.13%、56.81%.②傅里叶红外光谱分析结果显示,出水中含羧基、羟基、醌基、酰胺、苯环取代基等相关官能团的有机物减少,含脂肪族官能团的有机物增多.③16S rRNA结果显示,厌氧+好氧反应器+UASB反应器中的优势菌属分别为VadinHA17、Clostridium(梭菌属)、Anaerolineaceae(厌氧绳菌属)、Denitratisoma,其丰度占比分别为3.29%、35.17%、8.60%、2.84%.VadinHA17通过降解UASB反应器中的多种复杂有机物,为反硝化过程提供碳源;Clostridium利用UASB反应器中丰富的硝酸盐激活Clostridium胞外氧化酶,强化Clostridium对难降解复杂有机物的降解能力,将自身的胞内电子通过细胞膜上的细胞色素传递到胞外电子受体上,使NOx--N得到电子还原为氨,降低氮含量;Anaerolineaceae与Denitratisoma则分别作用于UASB反应器的厌氧消化过程及生物脱氮过程.研究显示,UASB反应器中由于VadinHA17、Clostridium、Anaerolineaceae与Denitratisoma的作用,CODCr和TN去除率分别为66.13%、56.81%,实现了晚期渗滤液中难降解有机物与TN的协同削减.   相似文献   
74.
在原地浸矿和稀土边坡稳定性关系研究中,往往忽略了矿层厚度的影响,为此选取3个具有代表性的边坡实例,基于Fredlund提出的饱和-非饱和渗流理论,构建考虑稀土矿层厚度的采场边坡在不同注液强度下浸矿饱和液面及孔隙水压力与浸矿时间的关系,研究不同全风化稀土矿层厚度对边坡渗流场及稳定性的影响。结果显示,在矿层厚度不变的情况下,注液强度越高,坡体内浸润线和孔隙水压力增加越快,边坡稳定性下降越快;在一定的注液强度条件下,矿层厚度对浸润线的上升具有明显的滞后效应,厚度越大,浸润线和孔隙水压力上升速度也越慢,边坡稳定性下降速度则相应减缓。因此,稀土矿层厚度对稀土边坡渗流场及稳定性的影响是显著的,稀土采场拟定合理注液强度时不容忽视。  相似文献   
75.
粉煤灰活性炭处理含铜废水的性能   总被引:2,自引:0,他引:2  
为了研究粉煤灰活性炭的吸附性能,以原粉煤灰和纯活性炭作对照,比较3种吸附剂在不同时间、pH和投加量下处理含Cu(Ⅱ)废水的性能.结果表明,在pH 5,吸附时间60 min的条件下,纯活性炭、粉煤灰活性炭和粉煤灰对含Cu(Ⅱ)废水的去除率依次为100%、97%和78.7%,粉煤灰活性炭吸附性能接近纯活性炭.Cu饱和的粉煤灰活性炭,用0.2 mol.L-1浓度的HCl清洗解吸效果最好.在饱和吸附和解吸重复10次后,再生粉煤灰活性炭的吸附容量下降20%,接近活性炭的18%,充分说明粉煤灰活性炭有较好的可再生性.粉煤灰制成粉煤灰活性炭,用于含金属废水的治理,不仅效果好、成本低,还是粉煤灰资源化的重要途径,有广阔的应用前景.  相似文献   
76.
77.
岩石的蠕变性质是引起工程岩体破坏的主要原因之一。通过进行分级加载蠕变试验,分析了红砂岩在不同加载应力条件下的蠕变特征。试验结果表明:在不同加载应力条件下,试件等速蠕变阶段应变速率与加载应力呈指数函数关系,并且当加载应力大于损伤强度σcd时,径向等速蠕变阶段应变速率大于轴向;同时,试件在破坏过程中存在加速蠕变阶段不明显的现象。根据蠕变破坏过程中黏滞系数的变化特点,将理想黏塑性体中的黏滞系数定义为时间的负指数函数,建立了一个非定常西原蠕变模型,该模型能较好反映红砂岩在单轴压缩条件下的蠕变特性。  相似文献   
78.
79.
为提高机动车尾气中NO_x的去除率,采用了介质阻挡放电对NO_x进行处理,研究了介质阻挡放电反应器在不同介质参数、放电参数和气体参数条件下对NO_x去除的影响,优化了双极性高压脉冲放电的反应参数。结果表明:当放电极为直径10mm的螺纹铜棒,介质管为内径16mm、介质厚度1.5mm的石英玻璃管,放电间隙为3mm,放电长度为28cm,放电频率为60Hz,O_2体积分数为6%,NO_x初始质量浓度为536mg/m~3,气体流量为1.1L/min,单向脉冲电压为12kV,C_2H_2与NOx质量浓度比为1.5时,NO转化率和NO_x去除率分别为64.56%和22.57%。  相似文献   
80.
吸附-解吸是环境中抗生素发生迁移转化的重要过程。文章研究选择鄱阳湖滨湖底泥,采用批平衡实验法进行2种喹诺酮类抗生素的底泥吸附-解吸实验,并考察了pH、阳离子种类及阳离子浓度等因素对吸附的影响。结果表明,底泥对2种喹诺酮类抗生素的吸附过程符合拟二级动力学方程(R~20.99)。在298 K下,Langmuir模型能够更好地描述底泥对2种抗生素的等温吸附行为,底泥对CIP和ENR的最大吸附容量Q_m分别为15.289 0 mg/g和8.649 6 mg/g。底泥对2种抗生素在pH 3~9时均具有较好的吸附率,其中pH=5时其吸附率均达90%以上。底泥对2种抗生素的吸附-解吸行为受到水环境中Ca~(2+)的明显影响。研究表明,2种喹诺酮类抗生素在鄱阳湖滨湖底泥中具有较好的吸附作用,但考虑鄱阳湖流域水环境中以Ca~(2+)为主的常量阳离子的存在,则底泥对2种抗生素的平衡吸附率为40%~50%。研究可为喹诺酮类抗生素在鄱阳湖水环境中的环境行为及归趋研究提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号