首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   214篇
  国内免费   690篇
安全科学   44篇
废物处理   7篇
环保管理   95篇
综合类   1511篇
基础理论   184篇
污染及防治   68篇
评价与监测   143篇
社会与环境   22篇
灾害及防治   14篇
  2024年   44篇
  2023年   125篇
  2022年   158篇
  2021年   178篇
  2020年   171篇
  2019年   122篇
  2018年   101篇
  2017年   86篇
  2016年   100篇
  2015年   114篇
  2014年   138篇
  2013年   84篇
  2012年   104篇
  2011年   80篇
  2010年   76篇
  2009年   55篇
  2008年   74篇
  2007年   84篇
  2006年   38篇
  2005年   34篇
  2004年   23篇
  2003年   21篇
  2002年   14篇
  2001年   11篇
  2000年   6篇
  1999年   3篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
排序方式: 共有2088条查询结果,搜索用时 15 毫秒
991.
为了研究南京市PM2.5的污染特征及来源贡献,于2018年3月至2019年2月在南京仙林地区进行PM2.5组分的在线监测,运用PMF和CMB受体模型,开展PM2.5来源解析.结果表明,观测期间南京市PM2.5平均质量浓度为54.3μg/m3,其中冬季平均浓度76.4μg/m3.PM2.5的主要组分为NO3-(21.3%~30.8%)、SO42-(18.9%~23.5%)、NH4+(14.3%~16.2%).从全年平均来看,PMF模型得到的PM2.5解析结果为:二次无机气溶胶(54.9%)、燃煤源(17.4%)、二次有机气溶胶(7.4%)、机动车排放源(7.1%)、工业源(4.9%)、扬尘源(4.8%)、其他源(3.4%);CMB模型得到的PM2.5解析结果为:硝酸盐(33.0%)、硫酸盐(24.0%)、燃煤源(16.4%)、机动车排放源(8.4%)、二次有机气溶胶(7.1%)、扬尘源(5.7%)、其他源(2.9%)、工业源(2.4%).不同季节PM2.5来源有所差异,夏冬季二次无机气溶胶占比大于春秋季,春冬季燃煤占比最大,二次有机气溶胶在秋季占比最大.结合2017年南京市大气污染源排放清单,对二次气溶胶贡献进行再解析,得到南京仙林地区PM2.5主要贡献来自燃煤源(PMF:34.14%,CMB:33.82%),机动车排放源(PMF:27.33%,CMB:29.33%)以及工业源(PMF:26.76%,CMB:24.77%).可见,影响南京仙林地区PM2.5的污染源主要来自燃煤源、机动车排放源和工业源,基于在线组分监测、利用PMF和CMB模型得到的PM2.5源解析结果具有较好的一致性.  相似文献   
992.
于2016~2017年5~9月采集祁连山东端(乌鞘岭、古浪、天祝)的地表水和地下水样品进行水化学分析,综合运用统计分析、Piper三线图、Gibbs图以及离子比值等方法探究了祁连山东端地表水和地下水主要离子组成特征、来源以及时空变化.结果表明,祁连山东端地表水和地下水化学组成中优势阳离子为Ca2+和Na+,Ca2+的平均浓度为76.897mg/L,占比73.89%;Na+的浓度为16.592mg/L,占比15.94%.优势阴离子为HCO3-和SO42-,HCO3-浓度190.117mg/L,占比68.71%;其次是SO42-,平均值为67.565mg/L,占比为24.42%.乌鞘岭河水、地下水,天祝河水、地下水的水化学类型为HCO3--Ca2+型,古浪河水、地下水水化学类型为HCO3--Ca2+-Mg2+型,处于水化学易变区.不同水体离子来源于岩石风化,主要受碳酸盐与硅酸盐风化溶解共同作用控制,人类活动在一定程度上贡献了水体的离子来源.不同水体主要离子浓度的时间变化特征各不相同,整体上大部分水体的离子浓度随时间变化不明显,总体趋势较平缓.  相似文献   
993.
伊逊河流域总磷污染来源解析   总被引:1,自引:1,他引:0       下载免费PDF全文
2017—2018年TP成为滦河一级支流伊逊河流域的主要污染因子,部分国控断面水质主要以GB 3838—2002《地表水环境质量标准》Ⅳ类、Ⅴ类为主.为开展伊逊河TP污染定量识别研究,在2017年和2018年伊逊河流域水体TP污染时空特征分析的基础上,从流域磷铁矿工业污染、城镇生活污水、雨水径流、河道内源释放以及农业非点源等方面开展TP污染研究.结果表明:①伊逊河流域上游至下游TP污染程度呈加剧恶化趋势,上游唐三营控制单元污染较轻,下游李台控制单元TP污染最重;丰水期TP污染较重,枯/平水期污染较轻;从年度看,2017年TP污染严重,2018年年均ρ(TP)下降了50.00%.②2017年、2018年伊逊河流域TP污染来源差异显著,2017年磷输入主要来自于磷铁矿工业污染,占比为33.46%;选矿企业整改后,2018年磷输入主要来源变为畜禽养殖和城镇生活污染,二者占比合计为59.91%.针对伊逊河流域TP污染特征,提出伊逊河流域TP污染控制建议:加强选矿企业环境监管,进一步完善监管体系;加强流域水土流失治理,实施矿山披绿;大力实施绿色农业工程,加强畜禽养殖布局优化.   相似文献   
994.
黄智浦  牛振川  马皓  王森 《环境科学研究》2020,33(11):2605-2612
黑碳(black carbon,BC)影响着全球辐射平衡、大气环境和人体健康,而降水是大气中黑碳的主要去除方式.简述了降水中黑碳的分析方法,重点论述了国内外降水中黑碳的分布特征和对黑碳的去除效率,以及模型和碳同位素示踪技术在识别黑碳来源的应用.结果表明:①单颗粒黑碳光度计因其检测限低、分析速度较快等优点在分析液相介质黑碳中应用较多.②降水中黑碳含量在空间上呈现较大差异,中国降水中黑碳含量较两极地区高2~3个数量级,越靠近两极地区,降水中黑碳含量越低,且工业革命后冰芯中黑碳含量有所增加.由于不同地区工业类型和化石燃料燃烧效率的差异,中国降水中黑碳含量大于东亚其他地区及欧洲地区.长时间(>8 h)降水对黑碳的去除效果较好.③混合单粒子拉格朗日积分轨迹模型、正定矩阵因子分解模型和碳同位素示踪技术相结合能更好地分析降水中黑碳的来源.研究显示,我国降水中黑碳含量较高、污染较重,但对城市降水中黑碳污染的关注还不足,未来应加强对不同地区城市降水中黑碳的观测,充分利用分析模型和碳同位素示踪技术解析降水中黑碳的来源.   相似文献   
995.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘.  相似文献   
996.
韩江流域土壤中有机氯农药的特征分布   总被引:1,自引:1,他引:0  
刘佳  丁洋  祁士华  瞿程凯 《环境科学》2018,39(11):5127-5134
本文选取韩江流域作为研究对象,于2013年4月,沿韩江干流采集土壤样品17个,利用气相色谱(GC-ECD)检测13种有机氯农药的含量.并以此为依据,进一步分析土壤中该污染物的分布组成特征和污染来源,根据美国环境保护署(U. S.EPA)的计算标准,对当地居民做出健康风险影响评价.结果表明,13种有机氯农药的含量区间为2. 97~1 275. 79 ng·g~(-1),检出率为75%~100%.其中HCHs和DDTs的含量变化趋于一致,即上游中游下游,在国内外均属于较低水平.另外,根据比值法推断,该区域的HCHs主要来源于工业HCH的输入,且近期仍有DDTs的输入,主要为工业DDT和三氯杀螨醇的混合输入. DDTs与总有机碳有较显著的相关性.致癌风险值(10~(-12)~10~(-8))和非致癌风险值(10~(-6)~10~(-3))均低于阈值(10~(-6)和1),因而表明该流域土壤对当地居民无危害.  相似文献   
997.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   
998.
2009—2017年山东省海滩垃圾时空分布特征与来源分析研究   总被引:1,自引:0,他引:1  
根据2009—2017年的调查资料,系统分析了9 a间山东省7处岸滩的海滩垃圾时空分布特征,并进行了垃圾来源分析研究。结果显示:山东省海滩垃圾的主要组分为塑料类、木制品类、玻璃类和纸类,数量以塑料类最多,占55.86%;山东省海滩垃圾平均数量密度为75958个/km2,质量密度为1186.47 kg/km2,山东省海滩垃圾数量与质量密度表现出区域差异性;山东省海滩垃圾规格以数量多、质量较小的中小块轻质垃圾为主(74.03%);山东省多年海滩垃圾存量与全国监测区海滩垃圾有类似变化特征;人类海岸活动产生的海滩垃圾(54.88%)、其他废弃物(24.59%)和航运/捕鱼垃圾(11.14%)为多年间山东省海滩垃圾的主要来源,分区域统计表明各地市海滩垃圾主要来源各有差异,这可能与各地市经济发展状况、海岸利用程度与监测区邻近海域功能区类型有关。  相似文献   
999.
碳同位素方法在水体溶解有机碳来源解析中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
水体碳库是全球碳库的重要组成部分,对区域乃至全球碳循环具有重要影响。溶解性有机碳(DOC)是水体主要的有机碳库,受自然和人类的双重影响,存在不同碳赋存方式之间的转化,代表了水体中的生物活动水平和受污染程度,并在水体碳循环乃至全球碳循环中发挥重要作用。碳来源是研究碳循环的基础,目前,碳同位素示踪方法是研究水体DOC来源最为有效的手段之一,并已进行了一系列颇有成果的研究,得出水体DOC大致有两种来源,即内源和外源,内源包括水生生物有机碳释放和颗粒有机碳(POC)降解等,外源包括陆源输入、大气降解、污水汇入等。本文验证了一种将δ13C与Δ14C值相结合示踪水体DOC来源的有效方法。碳来源示踪方法的不断改进和研究的不断深入,将有助于区分人为干扰对碳来源的影响,识别碳的储存与释放过程,从而进一步了解碳循环模式。  相似文献   
1000.
利用现有大量实测的137Cs背景值数据,根据北半球大气沉降137Cs/239+240Pu活度比值32.5(137Cs活度校正到2005年),将中国大陆土壤中137Cs转换成对应的239+240Pu,类比中国大陆137Cs-RI模型(137Cs-RI MCM),利用克里金插值方法模拟中国大陆土壤中Pu-RI的空间分布.目前中国大陆土壤中实测239+240Pu的沉积通量范围在7.3~546 Bq/m2之间,模拟Pu-RI的范围在3~812 Bq/m2之间,并且最大值出现的地点与模拟最大Pu-RI可能出现的区域基本一致,137Cs-RI MCM模型对中国大陆土壤中Pu-RI的模拟具有可行性.由于137Cs与239+240Pu沉降的不均匀性,根据中国土壤实测137Cs/239+240Pu的活度比可知,局部区域Pu-RI模拟值可能有偏差.为了更好的说明137Cs-RI MCM模型的可行性,本研究利用30~40°N之间中国62个城市位点的239+240Pu湿沉降通量(I湿沉降)与相应Pu-RI的值(I总沉降)进行了比较,发现I湿沉降和I总沉降的理论计算均是合理的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号