首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
综合类   6篇
基础理论   1篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
排序方式: 共有7条查询结果,搜索用时 12 毫秒
1
1.
鞍山市道路扬尘碳组分特征及来源解析   总被引:4,自引:4,他引:0  
林孜  姬亚芹  林宇  国纪良  马妍  赵静琦 《环境科学》2020,41(9):3918-3923
为研究鞍山市道路扬尘PM_(2.5)中碳组分污染特征及来源,于2014年10月采集鞍山市9条道路的扬尘样品,通过再悬浮得到PM_(2.5)滤膜样品,利用热光碳分析仪测定PM_(2.5)中OC(有机碳)和EC(元素碳)并分析其特征.结果表明,道路扬尘PM_(2.5)中ω(TC)为9.78%(外环路)~14.00%(千山西路),ω(OC)为8.15%(外环路)~10.84%(千山西路),ω(EC)为1.63%(外环路)~2.85%(千山西路),ω(OC)明显高于ω(EC),说明各道路扬尘中含有较多的有机碳;采样期间OC/EC的值均大于2,说明道路扬尘中均可能存在二次污染;通过Spearman相关分析及线性拟合可知,鞍山市道路扬尘PM_(2.5)中OC和EC来源大致相同;聚类分析表明,鞍山市道路扬尘PM_(2.5)中碳组分主要来源于机动车尾气排放、生物质燃烧和煤炭燃烧.  相似文献   
2.
为研究天津市春季道路扬尘PM_(2.5)和PM_(10)中碳组分特征及来源,于2015年4月用样方法采集天津市道路扬尘样品,利用再悬浮采样器将样品悬浮到滤膜上,经热光碳分析仪测定有机碳(OC)和元素碳(EC),利用非参数检验、OC/EC比值分析、相关分析及聚类分析对其污染特征和来源进行探讨.结果表明,PM_(2.5)中ω(TC)为4. 89%(次干道)~18. 83%(快速路),ω(OC)为3. 57%(次干道)~15. 39%(快速路),ω(EC)为1. 32%(次干道)~3. 44%(快速路); PM_(10)中ω(TC)为8. 14%(次干道)~19. 71%(快速路),ω(OC)为5. 91%(次干道)~16. 28%(快速路),ω(EC)为1. 96%(主干道)~3. 43%(快速路);快速路中各碳组分质量分数均较高,次干道中各碳组分质量分数均较低,可能是由于快速路中车流量较大,机动车尾气排放量较大,而次干道车流量较小;各类型道路中ω(OC)明显大于ω(EC),ω(EC)在不同道路类型中差异不大;两相关样本非参数检验表明,各碳组分质量分数在PM_(2.5)和PM_(10)间均无显著性差异;相关性分析表明道路扬尘中OC、EC来源大致相同.通过OC/EC比值分析及聚类分析可知,天津市春季道路扬尘中碳组分主要来源于燃煤、机动车尾气以及生物质燃烧.  相似文献   
3.
为探究典型城市机动车污染物排放特征和年际变化,分别于2017年、2019年和2021年在天津城市隧道开展机动车污染物排放观测研究,并对交通排放政策控制效果进行量化评估.结果表明,2021年天津市混合车队的NOx、CO和PM2.5平均排放因子分别为(30.1±4.2)、(316.4±23.9)和(6.9±1.5) mg·km-1·辆-1,比2019年分别降低了51.2%、22.3%和17.9%,比2017年分别降低了62.3%、33.0%和25.8%.污染物排放呈明显的日变化特征,0:00—5:00时段车队平均排放因子显著高于白天,这与柴油车占比高度相关.通过最小二乘法线性回归分析发现,2021年观测期间隧道内柴油车NOx、CO和PM2.5平均排放因子分别为403.7、1597.4和112.8 mg·km-1·辆-1,分别是汽油车排放因子的18.4、5.3和34.2倍.基于排放因子年际变化的政策评估分析表明,老旧车淘汰政策对NOx、CO和PM2.5减排分别贡...  相似文献   
4.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   
5.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。  相似文献   
6.
7.
于2016年7月和2017年1月采集盘锦市3个点位的PM2.5样品,研究盘锦市夏冬季节PM2.5中碳组分的特征与来源.结果表明:盘锦市夏季PM2.5、有机碳(OC)和元素碳(EC)日均浓度分别为(46.14±12.70),(8.58±2.82)和(2.89±1.54)μg/m3;冬季分别为(91.01±43.51),(24.50±15.51)和(7.31±5.00)μg/m3.夏季开发区和第二中学2个采样点的OC与EC之间不具有线性相关性;冬季3个采样点OC、EC高度相关.采用最小相关系数法(MRS)估算SOC浓度,得到夏季SOC的浓度为4.65μg/m3,占OC总量的54.19%;冬季SOC浓度为8.42μg/m3,占OC总量的34.36%.通过比值分析和主成分分析得出盘锦市夏季PM2.5中碳组分主要来源为汽油车尾气和燃煤排放;冬季PM2.5中碳组分主要来源为机动车尾气、燃煤排放和生物质燃烧.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号