首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
环保管理   4篇
综合类   3篇
污染及防治   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
本文对防震减灾文化的组成、创建动力及其方法进行了探讨.初次提出了防震减灾文化的概念,并对创建防震减灾文化的目的和如何创建、弘扬防震减灾文化提出了看法和观点.  相似文献   
2.
本文对防震减灾文化的组成、创建动力及其方法进行了探讨。初次提出了防震减灾文化的概念,并对创建防震减灾文化的目的和如何创建、弘扬防震减灾文化提出了看法和观点。  相似文献   
3.
ABSTRACT: Most watershed water quality simulation models require the user to specify pollutant buildup and washoff rate parameters for pollutants, by land use. Buildup and washoff rates are difficult to measure directly, and only limited guidance and few observed data are available from the literature. Many studies, however, report storm event mean concentrations (EMCs). These EMCs must arise as a result of the buildup and washoff processes, but typically represent the net contribution from a variety of pervious and impervious surfaces. This paper explores the relationship between EMCs and buildup/washoff parameters. An assumption of the mathematical form of the buildup/washoff relationship gives an algebraic expression for the EMC consistent with model assumptions. This yields techniques to separate observed EMCs into contributions from different land uses and from pervious and impervious surfaces. Given this relationship, numerical optimization may be used to estimate site specific values of buildup and washoff parameters from observed storm EMCs for use in modeling. Use of this approach helps ensure that model parameters are consistent with observed data, providing a rational starting point for final model calibration. Several site examples demonstrate use of the method.  相似文献   
4.
城市非点源污染模型研究进展   总被引:15,自引:2,他引:15  
王龙  黄跃飞  王光谦 《环境科学》2010,31(10):2532-2540
回顾了城市非点源污染模型的发展历史,分析了能够模拟城市非点源污染的7个国外模型(SWMM、STORM、SLAMM、HSPF、DR3M-QUAL、MOUSE和HydroWorks)的特点、适用性和局限性,介绍了国外城市非点源污染模型不确定性研究方法和成果以及城市非点源污染分析概率模型,总结了国内城市非点源污染模型的研究成果.指出国外城市非点源污染模型在污染物累积和冲刷、泥沙和污染物运移、污染物的生化反应等方面模拟能力不足,而国内城市非点源污染模型多是经验模型,模拟面积较小,模拟精度较差.提出未来城市非点源污染模型研究应提高泥沙和污染物的模拟能力,探索无资料和不完全信息下城市非点源污染的模拟和预测,加强城市非点源污染随机性模型的研究,发展城市非点源污染模型与GIS的耦合应用.  相似文献   
5.
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as an option for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure increases. The resulting overpressure may promote reactivation of sealed fractures or the creation of new ones in the caprock seal. This could lead to escape routes for CO2. In order to assess the probability of such an event, we model an axisymmetric horizontal aquifer–caprock system, including hydromechanical coupling. We study the failure mechanisms, using a viscoplastic approach. Simulations illustrate that, depending on boundary conditions, the least favorable moment takes place at the beginning of injection. Initially, fluid pressure rises sharply because of a reduction in permeability due to desaturation. Once CO2 fills the pores in the vicinity of the injection well and a capillary fringe is fully developed, the less viscous CO2 displaces the brine and the capillary fringe laterally. The overpressure caused by the permeability reduction within the capillary fringe due to desaturation decreases with distance from the injection well. This results in a drop in fluid pressure buildup with time, which leads to a safer situation. Nevertheless, in the presence of low-permeability boundaries, fluid pressure continues to rise in the whole aquifer. This occurs when the radius of influence of the injection reaches the outer boundary. Thus, caprock integrity might be compromised in the long term.  相似文献   
6.
Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such “closed” systems with impervious seals, or “semi-closed” systems with non-ideal (low permeability) seals, is different from that in “open” systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the “true” values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage–formation–seal systems of various geometric and hydrogeological properties.  相似文献   
7.
This paper presents the use of a model to predict sustained casing pressure (SCP), from early pressure buildup data, as a basis for inherently safer well integrity testing. Inherently safer principles aim to eliminate or reduce the hazards by design rather than by using protective features. SCP, a well integrity issue exhibited in many wells, is any measurable pressure that rebuilds after being bled down and attributable to causes other than artificially applied pressure or temperature fluctuations in the well. Intrusion of gas, resulting in SCP, can occur because of poor cement bond in the casing or cement deterioration. Gas entering the annulus migrates to the wellhead and represents a hazard due to increased wellhead pressure and the gas inventory. Compromised well integrity can have catastrophic consequences on both environmental and safety aspects.Most regulations require the monitoring, testing and, eventually, the elimination of SCP. However, test data analysis is predominantly qualitative and limited to arbitrary criteria. Due to the high percentage of wells that present SCP, accurate, safe and preferably fast testing methods are needed. This paper implements an analytical model, rooted in the transport processes and thermodynamics of the system, to predict pressure profiles and gas accumulation during SCP testing from early-time pressure buildup data. The amount of gas accumulated during different testing criteria, being 1) current practices and 2) early diagnostic by the analytical model, is calculated and compared. Results show that using the analytical model as a predictive tool, testing time is reduced significantly, thereby limiting the amount of gas accumulated and reducing the risk. This makes the testing procedure inherently safer as well as less time consuming.  相似文献   
8.
This paper presents a simple methodology for estimating pressure pressure buildup due to the injection of supercritical CO2into a saline formation, and the limiting pressure at which the formation starts to fracture. Pressure buildup is calculated using the approximate solution of Mathias et al. [Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009. Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media. doi:10.1007/s11242-008-9316-7], which accounts for two-phase Forchheimer flow (of supercritical CO2 and brine) in a compressible porous medium. Compressibility of the rock formation and both fluid phases are also accounted for. Injection pressure is assumed to be limited by the pressure required to fracture the rock formation. Fracture development is assumed to occur when pore pressures exceed the minimum principal stress, which in turn is related to the Poisson’s ratio of the rock formation. Detailed guidance is also offered concerning the estimation of viscosity, density and compressibility for the brine and CO2. Example calculations are presented in the context of data from the Plains CO2 Reduction (PCOR) Partnership. Such a methodology will be useful for screening analysis of potential CO2 injection sites to identify which are worthy of further investigation.  相似文献   
9.
本文针对某一具体城市集水区,简要介绍一种污染物集聚模型和冲洗模型参数的率定方法。该方法概念清晰,操作简便,且成果符合实际,有一定精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号