首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   8篇
  基础理论   15篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
高效液相色谱法测定畜禽废物中磺胺类、喹诺酮类抗生素   总被引:4,自引:0,他引:4  
建立了一种荧光和紫外检测器串联同时测定磺胺类(磺胺甲基嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺甲嗯唑)和喹诺酮类(诺氟沙星、环丙沙星、恩诺沙星)抗生素的高效液相色谱法.4种磺胺类、3种喹诺酮类抗生素分别在0.50—10.0μg·mL一、0.01—0.50μg·mL。范围内线性良好,相关系数R^2〉0.99.确定了最佳提取液为酸化乙腈,3种喹诺酮类、4种磺胺类药物的检测限(S/N=3)与回收率分别为0.46—0.65μg·kg^-1、65.8%-106.3%与0.08—O.19μg·b~、90.1%-120.3%.通过对环境样品的检测,发现畜禽废物中磺胺类抗生素的含量高于喹诺酮类,抗生素含量和检出率均较高的药物是环丙沙星、磺胺甲嗯唑.猪粪中抗生素的含量高于鸡粪中的,而检出率则低于鸡粪中的.环丙沙星、磺胺甲嗯唑可能对农业生态环境安全的威胁更大.该方法简便、快速,可满足畜禽废物中磺胺类、喹诺酮类抗生素的检测.  相似文献
2.
磺胺类兽药对土壤微生物数量的影响   总被引:2,自引:0,他引:2  
采用室内培养的方法,研究磺胺类兽药(磺胺二甲基嘧啶、磺胺甲噁唑)污染对土壤微生物数量(细菌、真菌、放线菌、固氮菌、兼气性固氮菌、硝化细菌、亚硝化细菌、反硝化细菌及氨化细菌)的影响.结果表明,磺胺类兽药对土壤细菌数量有一定的激活作用,其最大激活率在700%以上.兽药对土壤真菌数量的影响主要呈现抑制作用,其最高抑制率为92.9%.兽药对土壤放线菌数量有一定的抑制作用,对土壤固氮菌数量则有一定的激活作用.兽药对土壤兼气性固氮菌数量的影响表现为较低浓度时(10 mg.kg-1)抑制,而较高浓度时(50 mg.kg-1)则激活.兽药对土壤硝化细菌、亚硝化细菌、反硝化细菌及氨化细菌有一定的激活作用,其中对硝化细菌的最大激活率可达1000%以上.  相似文献
3.
磺胺类兽药对土壤酶活性的影响   总被引:2,自引:0,他引:2  
采用室内培养的方法,研究磺胺类兽药(磺胺二甲基嘧啶、磺胺甲唑)污染对土壤蔗糖酶、硝酸还原酶、过氧化氢酶、磷酸酶、脲酶和多酚氧化酶活性的影响。结果表明,磺胺类兽药可显著抑制土壤蔗糖酶的活性,其抑制率可达50%以上。兽药对土壤硝酸还原酶活性的影响表现为先抑制后激活的趋势,最大抑制率和激活率可达98.6%、580%。兽药对土壤过氧化氢酶活性的影响主要以激活作用为主,对土壤磷酸酶活性的影响则呈现"激活-抑制"的循环趋势。兽药对土壤脲酶活性的影响表现为,培养前期低浓度时激活,高浓度时抑制;培养后期低、高浓度时均抑制。兽药对土壤多酚氧化酶活性的影响表现为,培养前期激活,培养后期抑制。  相似文献
4.
水和土壤中磺胺和激素类药物的同时分析方法   总被引:1,自引:0,他引:1  
建立了一种水和土壤中磺胺嘧啶、磺胺甲嘧啶、磺胺噻唑、磺胺二甲嘧啶、磺胺二甲氧嘧啶、磺胺甲(噁)唑6种磺胺类药物和17α-雌二醇、17β-雌二醇、雌酮、雌三醇、炔雌醇、乙烷雌酚6种激素类药物同时分析的方法.具体步骤:水样过滤后使用Oasis HLB固相萃取小柱进行净化富集;土壤样品经加速溶剂提取(ASE)之后过Oasis HLB小柱净化富集;采用超高效液相色谱-串联质谱(UPLC-MS/MS)进行检测,分别以乙腈和1mL·L-1甲酸溶液、乙腈和1 mL· L-1氨水溶液作为流动相.磺胺在水和土壤中的回收率分别为87.4%~ 103.6%和58.2%~80.0%,激素在水和土壤中的回收率分别为84.8%~ 101.8%和62.8%~79.3%,相对标准偏差均小于10.3%.水和土壤中磺胺的检测限分别为0.11~0.24ng·L-1和0.01~0.02ng·g-1,激素的检测限分别为0.31 ~2.14 ng·L-1和0.03~0.21ng·g-1.用上述方法检测宿迁某典型养殖场周边的地表水和土壤,结果表明采用该方法检测环境样品中的磺胺和激素类药物是可行的.  相似文献
5.
建立了高效液相色谱-荧光检测法测定畜禽粪便中4种磺胺药物(磺胺甲基嘧啶(SM1)、磺胺氯哒嗪(SCP)、磺胺邻二甲氧嘧啶(SDM’)、磺胺喹噁啉(SQ))的方法.样品用25 mL甲醇提取3次,合并提取液,浓缩干燥,用0.1 mol.L-1的HCL溶解残渣,经荧光胺衍生化后,用反相C18柱为分离柱,以乙腈∶0.5%乙酸=40∶60(V/V)为流动相进行洗脱,20 min内分离4种药物.在0.05—5.00μg.mL-1范围内,4种磺胺类药物的峰面积与质量浓度的线性关系良好(R2≥0.999),SM1、SCP、SDM’、SQ的定量限(LOQ)分别为2.3、6.3、4.3和9.6μg.kg-1;添加水平为50、100、1000μg.kg-1时,SM1、SCP、SDM’、SQ的回收率分别为74.91%—81.82%、78.45%—91.43%和86.10%—92.88%,RSD小于8.82%.  相似文献
6.
我国是世界养猪第一大国,生猪饲养量和猪肉产量均位居世界第一.养猪业每年所产生的粪便、废水中含有大量畜用抗生素及其代谢产物,使养猪业废弃物成为环境中重要的抗生素污染源之一,随之产生的抗性基因污染及传播问题也不容忽视.本文结合近年来国内外的研究数据,对我国养猪业废弃物中四环素类、磺胺类抗生素及其相关抗性基因的检测方法、污染状况及影响抗性基因传播的因素进行了分析,并基于控制我国养猪行业抗生素及抗性基因污染的目的,提出了今后的研究重点.  相似文献
7.
群体感应抑制剂是抗生素最有可能的替代品,两者在环境中的共存会对生物造成联合毒性影响.以革兰氏阳性菌枯草芽孢杆菌(Bacillus subtilis,B.subtilis)为模式生物,3种群体感应抑制剂(呋喃酮、吡咯酮和吡咯)和磺胺类药物为研究对象,测定了20 h单一和联合毒性.结果显示,3种群体感应抑制剂和磺胺的联合毒性分别表现为相加和拮抗.同时根据不同的联合毒性效应,以药物和蛋白分子的对接结合能(Ebinding)作为结构参数分别构建了联合毒性的QSAR模型,并分析了不同毒性效应下混合物中各组分的相互作用关系.结果表明,无论是相加还是拮抗,在二元混合体系中磺胺与其靶蛋白DHPS的有效结合浓度总是高于群体感应抑制剂与LuxS的有效结合浓度;但当产生拮抗作用时,磺胺与DHPS的有效结合浓度相对较低,推测可能是群体感应抑制剂的存在使得磺胺由分子态变为离子态,从而使其难以穿过细胞壁与DHPS结合导致的.本研究为建立和分析联合毒性的QSAR模型提供了一定的理论基础.  相似文献
8.
抗生素类药物在广泛应用的同时,也带来了细菌耐药性问题.因此,越来越多的抗生素替代品如群体感应抑制剂(QSIs)被研究和应用,在未来二者可能共存于环境之中.为了对它们混合物联合毒性评价进行系统的研究,本文选择费氏弧菌(Vibrio fischeri,V.fische为受试生物,测定了5种磺胺类抗生素(SAs)与6种QSIs对V.fischeri的发光强度(HV)和生长量(OD600)的联合毒性作用,初步探讨了SAs与QSIs对V.fischeri发光联合毒性和生长联合毒性差异的原因.结果表明:SAs与QSIs联合作用于V.fischeri时,对发光的联合毒性表现为拮抗,对生长的联合毒性表现为拮抗或加和,且TUHV >TUOD.这可能是由于QSIs对V.fischeri的发光的抑制作用可以削弱SAs对发光的促进作用,而SAs与QSIs对V.fischeri的生长都表现出抑制作用,两者没有互相削弱作用.同时,基于分子对接和回归分析法的研究表明了靶蛋白上结合的化合物有效浓度不同也可能是造成SAs与QSIs联合作用于V.fischeri时TUHV>TUOD的主要原因.该研究可以为抗生素与QSIs联合暴露的生态风险评价提供借鉴.  相似文献
9.
抗生素的滥用使细菌耐药性问题日益突出,给许多疾病的预防与控制增加了难度。基因突变和质粒接合转移是细菌获得抗生素抗性基因的主要方式,许多研究围绕抗性基因来展开,但是关于群体感应对于抗性基因产生和传播的影响鲜有报道。本文以大肠杆菌(Escherichia coli)为模式生物,群体感应信号分子N-(β-酮己酰)-L-高丝氨酸内酯(3-oxo-C6-HSL, C6)和3种磺胺类抗生素(磺胺嘧啶、磺胺甲恶唑、磺胺氯哒嗪)为研究对象,测定了其对大肠杆菌生长效应、突变效应及接合转移效应的影响。结果表明:C6不影响磺胺对大肠杆菌的生长抑制率,但能够削弱磺胺对大肠杆菌突变的促进作用,并且能增强磺胺对大肠杆菌R388质粒接合转移的抑制作用。本文为从群体感应角度研究大肠杆菌耐药性的产生与传播提供新思路。  相似文献
10.
抗生素滥用所导致的环境问题日益受到人们的关注,抗生素在环境中常以低剂量的形式暴露,生物体在低浓度的抗生素作用下通常会表现出毒物兴奋效应(hormesis).因此,研究抗生素的hormesis,对抗生素的生态风险评价极其重要.为了研究抗生素的hormesis,本文选取4种磺胺类抗生素为研究对象,观测了不同浓度培养基下磺胺对大肠杆菌能否产生hormesis.结果表明,磺胺对大肠杆菌在原倍和0.8倍浓度的培养基下不产生hormesis,在0.6和0.4倍浓度的培养基下产生hormesis;并且,结合我们之前对另一种革兰氏阴性菌——费氏弧菌hormesis的研究可知,对于具有不同群体感应系统的2种革兰氏阴性菌,都存在hormesis,磺胺可以通过作用群体感应系统使革兰氏阴性菌产生hormesis,只是hormesis的大小不同.上述研究结果为抗生素的生态风险评价提供了依据,为hormesis的相关研究提供了参考.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号