首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   11篇
  国内免费   74篇
安全科学   1篇
环保管理   6篇
综合类   85篇
基础理论   3篇
污染及防治   3篇
评价与监测   4篇
  2023年   8篇
  2022年   5篇
  2021年   10篇
  2020年   15篇
  2019年   13篇
  2018年   22篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   6篇
排序方式: 共有102条查询结果,搜索用时 19 毫秒
1.
2.
常州市臭氧污染传输路径和潜在源区   总被引:1,自引:1,他引:0  
利用NCEP全球再分析资料和HYSPLIT4模式,计算了2013—2015年常州市臭氧(O_3)超标日的气流后向轨迹。结合聚类分析方法和常州市PM2.5、PM10、SO2、NO2、O_3数据,分析了O_3超标日不同类型气团来源对各污染物浓度的影响,并利用引入权重因子后的潜在污染源贡献函数分析了影响常州市O_3超标的潜在污染源区分布特征。结果表明:常州市O_3超标期间易受到东南和西南方向气流影响,其中从东海和黄海途经浙江东北部、上海、江苏南部等地的东南气流占比达50%以上。自内陆途经黄山-湖州-宜兴到常州的气流对应的O_3平均质量浓度最高,为116μg/m3。自山东经枣庄-宿迁-淮安-泰州-苏州-无锡到常州的气流对应的O_3平均质量浓度最低,为78μg/m3,但该气流对应的SO2和NO2平均值为各聚类中的最高。影响常州市O_3的潜在污染源区主要在常州周边200 km以内的区域,且集中在从南京至上海的长江下游沿线区域和杭州湾区域;其中太湖湖区为重点污染源源区之一。O_3超标日影响常州NO2的潜在污染源区主要集中在江苏南部、浙江东北部和上海3个区域,太湖周边的常州、无锡、苏州和湖州等几个临近城市为潜在的重点污染源区。与影响常州O_3的WPSCF高值区相比,影响NO2的高值区分布范围更大、距离更远。影响常州O_3的潜在污染源区分布,与长江三角洲地区人为源大气污染物的高排放区域较为一致,说明长江三角洲地区的O_3污染与本区域的人为源大气污染物排放有着极为密切的关联。  相似文献   
3.
长三角地区大气污染治理取得一定成效,然而空气质量改善逐渐进入瓶颈期和攻坚期,大气污染治理战略需要从宏观层面系统谋划。本文系统分析了近10年来长三角区域经济、能源、产业、交通的发展状况和趋势,结合区域大气污染物浓度水平的演变,分析了大气污染与经济社会发展的耦合关系。结合当前区域空气污染的空间分布差异以及经济能源交通结构的内在差别,识别了大气污染的区内差异特征及关键制约因素。在此基础上,从能源结构和产业结构调整、交通结构优化、分区施策、深化治理等角度,为深化区域大气污染联防联控,持续改善大气污染问题提出了政策建议。  相似文献   
4.
5.
中小燃煤锅炉PM2.5排放特征实测研究   总被引:1,自引:0,他引:1  
楼晟荣 《环境科学学报》2014,34(12):3119-3125
中小燃煤锅炉是我国工业和民用部门最主要的供热方式,掌握其一次颗粒物的排放特征对于研究大气PM2.5的来源和控制途径具有重要意义.本研究通过实测中小燃煤锅炉烟气,获得了中小燃煤锅炉PM2.5及以下粒径段的排放因子和分布,并分析了各粒径段的颗粒密度及除尘装置的去除效率.研究发现,PM2.5质量排放因子平均为(0.123±0.061)kg·t-1,PM2.5粒子数的排放因子平均为(3.17±1.65)×105t-1,烟气中70~120 nm粒径段的积聚模态颗粒在质量和数量上都高于其他粒径段.锅炉燃烧负荷是影响锅炉PM2.5排放的重要因素,锅炉的燃烧负荷越低,PM2.5排放将随之降低.实测锅炉的PM2.5排放因子显著低于物料衡算结果,说明采用物料衡算方法可能极大地高估了现有排放清单中工业燃煤锅炉的一次PM2.5排放量.  相似文献   
6.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   
7.
长三角地区秸秆燃烧排放因子与颗粒物成分谱研究   总被引:26,自引:12,他引:14  
为获取长三角地区秸秆燃烧污染物排放因子及其颗粒物成分谱,利用自行设计开发的开放式燃烧源排放测试系统,选取小麦、水稻、油菜、豆秸和薪柴等5类典型作物秸秆,分别采用露天焚烧和炉灶燃烧2种燃烧方式,实测其气态污染物和颗粒物排放特征.结果表明,露天燃烧各类秸秆的CO、NOx和PM2.5平均排放因子约为28.7、1.2和2.65 g·kg-1,由于炉灶氧含量相对较低,燃烧不充分,其污染物排放因子总体高于露天燃烧,分别为81.9、2.1和8.5 g·kg-1.各类秸秆中,油菜的排放水平相对较高.含碳组分(OC和EC)是生物质秸秆燃烧产生PM2.5的主要组成,在露天燃烧中OC和EC的质量分数分别占(38.92±13.93)%和(5.66±1.54)%;炉灶燃烧中OC和EC分别为(26.37±10.14)%和(18.97±10.76)%.Cl-、K+等水溶性离子也有较大贡献,在露天燃烧中分别为(13.27±6.82)%和(12.41±3.02)%;在炉灶燃烧中分别为(16.25±9.34)%和(13.62±7.91)%.小麦、水稻、油菜和豆秸等作物秸秆露天燃烧排放颗粒物的K+/OC值分别为0.30、0.52、0.49和0.15,这些特征值可用于判断长三角区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.  相似文献   
8.
挥发性有机物(VOCs)在臭氧(O3)和二次有机气溶胶(SOA)生成中起着关键作用.南京市江北地区工业密集,为评估工业排放对大气VOCs的影响,本研究于2017年3月在工业区受体点南京信息工程大学(南信大)开展了为期近1个月的VOCs采样和测量.监测数据显示南信大站点大气VOCs浓度波动大,范围(体积分数)在10.3×10-9~200.5×10-9之间,烯烃、芳香烃和卤代烃等组分(例如:乙烯、丙烯、苯、苯乙烯、二氯甲烷等)存在明显的异常高值.利用正交矩阵因子模型(PMF)对VOCs进行来源解析,结果显示在观测期间与工业排放相关源的平均贡献为50.0%,其中石化源、化工源以及涂料和溶剂使用源的贡献分别为14.9%、19.3%和15.8%.在VOCs高污染时段,与工业排放相关源的占比高达74.9%.进一步结合风速和风向数据,确定了不同类型工业源的主导方位,追溯排放源的潜在位置.  相似文献   
9.
传统城市发展理论认为,空气污染会导致人口流出。然而,本文以城市雾霾数据为例,分类别构建固定效应模型后发现,空气污染会促进百强城市的人口净流入(形成拉力效应),非百强城市的人口净流出(形成推力效应)。拉力效应与传统的城市发展理论不符。本文认为,当城市间收入差距过大时,流入居民会形成高水平的收入预期,促使其愿意承受更严重的空气污染,该预期可量化为空气污染的拉力效应。据此进一步研究收入水平对推拉效应的调节作用发现,随着收入水平上升,其能放大百强城市的拉力效应和非百强城市的推力效应,即进一步促进百强城市的人口净流入和非百强城市的人口净流出。在此基础上,本文对百强城市和非百强城市分别提出政策建议,以期能为我国区域协调发展、城镇化科学转型提供理论支持。  相似文献   
10.
严茹莎  王红丽  黄成  王倩  安静宇 《环境科学》2021,42(8):3577-3584
随着大气污染治理措施的不断推进,近年来上海市PM2.5浓度呈现明显的下降趋势,但O3污染现象依然频发,因此分析O3污染发生规律,科学制定O3削峰方案是目前亟需解决的问题.本研究以2017年7月为例,期间长三角17个城市累计O3污染天数165 d,其中上海最为严重,7月超标率为64.5%,分析前体物浓度和气象要素,主要是由于高温、低湿、小风不利气象条件和较高的前体物排放共同导致,期间上海市NO2平均浓度为27.1 μg·m-3,VOCs体积分数为22.5×10-9.通过WRF-CMAQ情景模拟,仅上海进行前体物削减,对区域性O3污染控制较为有限,建议多城市共同削减,上海及邻近周边9城市削减VOCs排放30%,上海O3日最大8 h浓度可下降7.2%,如果扩大到17个城市削减,上海O3日最大8 h浓度降幅为7.8%.同时建议严格控制前体物削减比例,VOCs :NOx削减比例应大于3 :1,否则会导致部分地区O3浓度反弹.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号