首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
安全科学   2篇
环保管理   7篇
综合类   3篇
基础理论   3篇
污染及防治   15篇
评价与监测   10篇
社会与环境   2篇
  2023年   1篇
  2022年   4篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有42条查询结果,搜索用时 46 毫秒
1.
Indiscriminate adoption and use of cell phone technology has tremendously increased the levels of electromagnetic field radiations (EMFr) in the natural environment. It has raised the concerns among the scientists regarding the possible risks of EMFr to living organisms. However, not much has been done to assess the damage caused to plants that are continuously exposed to EMFr present in the environment. The present study investigated the biochemical mechanism of interference of 900 MHz cell phone EMFr with root formation in mung bean (Vigna radiata syn. Phaseolus aureus) hypocotyls, a model system to study rhizogenesis in plants. Cell phone EMFr enhanced the activities of proteases (by 1.52 to 2.33 times), polyphenol oxidases (by 1.5 to 4.3 times), and peroxidases (by 1.5 to 2.0 times) in mung bean hypocotyls over control. Further, EMFr enhanced malondialdehyde (an indicator of lipid peroxidation), hydrogen peroxide, and proline content, indicating a reactive oxygen species-mediated oxidative damage in hypocotyls. It was confirmed by the upregulation in the activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase, and glutathione reductase) suggesting their possible role in providing protection against EMFr-induced oxidative damage. The study concluded that cell phone radiations affect the process of rhizogenesis through biochemical alterations that manifest as oxidative damage resulting in root impairment.  相似文献   
2.
3.
Abstract

Over the last few decades, the use of chemical pesticides has increased dramatically in the U.S. This relatively sudden increase greatly concerns the U.S. Environmental Protection Agency (EPA), since it has the responsibility for ensuring the safety of all pesticides used in the U.S. In response to this concern, EPA has established a review program, the Rebuttable Presumption Against Registration (RPAR), for periodically reassessing the mutagenic and carcinogenic potential of pesticide compounds.

This paper presents a review and evaluation of the data reported in the literature on six chemical pesticides suspect for mutagenic potential. The pesticide chemicals discussed are maleic hydrazide; rotenone; monuron; diallate; triallate, and benomyl.  相似文献   
4.
Ecosystem services (ES), such as biological control, pollination, soil formation, nutrient cycling in agriculture are vital for the sustainable supply of food and fibre. The current trends of decline in the ability of agricultural ecosystems to provide ES pose great threat to food security worldwide. This paper discusses the concept of ES and identifies ES associated with agriculture. It discusses the economic and ecological benefits of these ES on farmland in general and its linkages with organic agriculture. The provision of ES on farmland may help to motivate the redesign of small-scale farms using new eco-technologies based on novel and sound ecological knowledge. This has potential to meet the food demand of growing population without damaging human health and the environment.  相似文献   
5.
Environmental Science and Pollution Research - Solar energy is a vast renewable energy source, but uncertainty in the demand and supply of energy due to various geographical regions raises a...  相似文献   
6.
This study deals with the toxicological impact of the herbicide anilofos on photosynthesis, respiration, nitrogen assimilation, and antioxidant system in a diazotrophic rice field cyanobacterium Anabaena torulosa. Treatment of anilofos (1.25, 2.5, and 5?mg?L?1) affected growth, photosynthetic pigments, photosynthesis, and respiration of the cyanobacterium. Although all the photosynthetic pigments were affected, a maximum effect of the herbicide was observed on phycocyanin (51% reduction) followed by the carotenoids. The effect of the herbicide on photosynthetic pigments resulted in 57% decrease in photosynthetic O2 evolution. Studies on the photochemical activity demonstrated that both photosystems (PS I and PS II) were affected by the herbicide. Decrease in the photosynthesis rate resulted in decreased nitrogen assimilation, as revealed by reduced nitrate (20%) and ammonium (26%) uptake and decreased activities of nitrogenase (63% decrease) and glutamine synthetase (22% decrease). This ultimately resulted in the reduced growth of the organism. Activities of superoxide dismutase, catalase, and peroxidase in the presence of anilofos increased by 1.8–3.5 times over control cultures. Proline content increased by 1.6 times, while the content of ascorbate decreased slightly. These results indicate that the organism was able to tolerate the herbicide stress by activating oxidative stress defense mechanism.  相似文献   
7.
This paper assesses the potential loss of irrigation benefits in reallocating water from irrigation to meet requirements for environmental flows (e-flows) in the Upper Ganga Basin (UGB) in northern India. The minimum requirement for e-flows in the UGB is 32 billion cubic meters (BCM), or 42 % of the mean annual runoff. The current runoff during the low-flow months falls below the minimum requirement for e-flows by 5.1 BCM. Depending on irrigation efficiency, reallocation of 41–51 % of the water from canal irrigation withdrawals can meet this deficit in minimum e-flows. The marginal productivity of canal irrigation consumptive water use (CWU), estimated from a panel regression with data from 32 districts from 1991 to 2004, assesses the potential loss of benefits in diverting water away from crop production. In the UGB, canal irrigation contributes to only 8 % of the total CWU of 56 BCM, and the marginal productivity of canal irrigation CWU across districts is also very low, with a median of 0.03 USD/m3. Therefore, at present, the loss of benefits is only 1.2–1.6 % of the gross value of crop production. This loss of benefits can be overcome with an increase in irrigation efficiency or marginal productivity.  相似文献   
8.
Due to rapid industrialization and urbanization during last two decades, contamination of soils by heavy metals is on an increase globally. Lands under peri-urban agriculture are the worst affected. In NCT, Delhi about 14.4% of land area is chemically degraded. In order to take care of this problem, recently the Supreme Court of India ordered to shift various non-confirming (about 39,000 units) industries to regions outside NCT, Delhi. However in spite of this, there have been several reports and parliamentary debates on the phyto-toxicity and extensive accumulation of heavy metals in the region. Literature review revealed that the basis of these debates is a few studies on some point locations in/around Delhi. It was further observed that information on the distribution and extent of heavy metal pollution problem in the region was completely missing. The present study was thus basically aimed at assessing the spatial distribution/extent and type of heavy metal pollution in the study area, for enabling future designing of appropriate site-specific management measures by the decision makers.For this, detailed spatial information on bio-available heavy metal concentrations in the soils and surface/sub-surface waters of NCT (Delhi) was generated through actual soil/water surveys, standard laboratory methods and GIS techniques. The study showed that concentration of all micronutrients (viz. Zn: 0.05–0.18 ppm; Cu: in traces; Fe: 0–0.5 ppm; and Mn: 0–1.2 ppm) and most heavy metals (viz. Ni: 0–0.7 ppm; Pb: 0–0.15 ppm and Cd: in traces) in the surface/sub-surface irrigation waters were well within permissible limits. However Cr concentrations in irrigation waters of Alipur and Shahdara blocks were far above their maximum permissible limit of 1 ppm. It was further observed that Ni and Cr concentrations in the drinking waters of almost entire test area were far above maximum permissible levels of 0.02 and 0.01 ppm, respectively. Bio-available concentrations of several heavy metals (viz. Pb: 0.1–2 ppm; Cd: traces; Ni: 0.05–2 ppm and Cr: 0–0.4 ppm) in the study area soils were also observed to be well within the maximum permissible limits. However there were point Cu contaminations (5–10 ppm) in the sewage-sludge amended soils of vegetable growing areas near south Shahdara block. This was attributed to increased Cu availability due to oxidized acidic conditions generated by over-irrigation of agricultural lands. Available Mn concentrations in Kanjhawala, western Najafgarh and Alipur soils were also observed to be above maximum permissible limit of 10 ppm. This was observed to be mainly due to the geology (i.e. presence of Mn rich sedimentary rocks) and prevalence of reduced acidic conditions, due to paddy cultivation, in these areas. It was further observed that there is acute zinc (Zn) deficiency (< 0.6 ppm) in paddy growing soils of north Kanjhawala, Alipur and some parts of Najafgarh and Shahdara blocks due to extensive leaching of available Zn fractions to lower soil horizons. Similar available Zn deficiencies in high pH (8.5) soils of areas around Bamnoli village in E-Najafgarh block were also observed.  相似文献   
9.
The sulphur dioxide and nitrogen oxides emissions from all sources in Alberta, Canada, during 1982 amounted to 488,297 and 353,511 tonnes, respectively. During this year deposition of wet sulphate from all stations in the province, 8 kg ha–1 yr–1, compares well with the five-year average (1978–1982) value of 10 kg ha–1 yr–1. These measurements are about one-half of the wet sulphate deposition criteria of 20 kg ha–1 yr–1 established for protecting the moderately sensitive aquatic ecosystem in eastern Canada. Due to dry, cold, continental climate conditions of Alberta, dry sulphate or sulphur deposition is equally or more important than wet deposition. No effects of the long-range transport of atmospheric pollutants (LRTAP) on the ecosystems in Alberta have been observed to date. Atmospheric deposition target loadings of SO4 –2, NO3 , and H+ for Alberta and western Canadian environmental conditions should be developed to protect the highly sensitive ecosystems. Some future research and monitoring priorities for Alberta and western Canada are outlined.  相似文献   
10.
The governments of British Columbia, Alberta, Saskatchewan, Manitoba, Northwest Territories, and Canada held joint consultations in 1980 to review the available information on acid rain from Western and Northern Canada. It was concluded that acid rain might become a problem in the future and, hence, a research, monitoring, and management strategy for acidic deposition was needed. An overview of the joint governments' management strategy, organization of research and monitoring programs, and accomplishments to date are discussed in this article.The authors are members of the Technical Committee for the Long Range Transport of Atmospheric Pollutants (LRTAP)/Acid Deposition in Western and Northern Canada, and represent Alberta and British Columbia, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号