首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
  国内免费   3篇
废物处理   3篇
环保管理   5篇
综合类   5篇
基础理论   19篇
污染及防治   34篇
评价与监测   11篇
社会与环境   8篇
  2023年   3篇
  2022年   6篇
  2021年   7篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   9篇
  2012年   3篇
  2011年   3篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   
2.
Environmental Science and Pollution Research - Solar energy is a vast renewable energy source, but uncertainty in the demand and supply of energy due to various geographical regions raises a...  相似文献   
3.
The spatial distribution of the C/N ratios and variations in δ13C and δ15N of suspended particulate matter were used to characterise their source in Asia’s largest brackish water lagoon, Chilika, India. In addition, the significance of re-mineralised nutrients in the primary productivity of the shallow lagoon was also determined through quantification of the subsurface nitrogen uptake conditions at two relatively stable locations in the lagoon. The results indicated that the influence of terrestrial organic matter was the maximum in the northern sector and was relatively limited at the central and southern part of the lagoon. In situ 15N uptake experiments (daytime) under biogeochemically stable conditions revealed that the N uptake by phytoplankton ranged between 0.24 and 1.01?mM?m?3?h?1 during pre-monsoon and post-monsoon seasons. New production and regenerated production in the shallow lagoon was also estimated by calculating f-ratios (ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation, have been estimated), which varied from 0.52 in the post-monsoon to 0.38 in the pre-monsoon. Lowering of the f-ratio from post- to pre-monsoon indicated a dominance of mineralisation over the new production.  相似文献   
4.
Analysis of endosulfan, chlorpyrifos, and their nonpolar metabolites in extracts from environmental aqueous and soil samples was performed using a gas chromatography-tandem mass spectrometry (GC–MS/MS) technique. Full-scan GC–MS analysis showed poor sensitivity for some of the metabolites (endodiol and endosulfan ether). A multisegment MS/MS method was developed and MS/MS parameter isolation time, excitation time, excitation voltage, and maximum excitation energy were optimized for chosen precursor ions to enhance selectivity and sensitivity of the analysis. The use of MS/MS with optimized parameters quantified analytes with significantly higher accuracy, and detection limits were lowered to ~1/6th compared with the full-scan method. Co-eluting compounds, chlorpyrifos and chlorpyrifos oxon, were also analyzed successfully in the MS/MS mode by choosing exclusive precursor ions. Analysis of soil and water phase samples from contaminated soil slurry bioreactors showed that the MS/MS method could provide more reliable estimates of these pesticide and metabolites (especially those present in low concentrations) by annulling interferences from soil organic matter.  相似文献   
5.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   
6.
High population rise and climate changes are increasing issues of agricultural production and food safety. Nanotechnology is finding revolutionary applications to improve agricultural and food systems, notably for better crop production and food preservation. Here we review research, industrial and patent trends of nanoscience in food and agriculture. In a literature survey, we found 44.6% publications in the nano-food research area during the years 2013–2015 and 59.09% publications in the nano-agriculture research area during 2012–2015. USA is leading in the development of nanotechnology firms with a maximum share of 75.5% of the total firms, followed by Germany and France with 8.10 and 4.74%, respectively. USA is leading in the nano-food research with 22 granted patents, whereas China is placed first in nano-agriculture research with 28 granted patents during assessment years 2011–2015. Nano-food research focused mainly on nano-food packaging with 76.84% contributions, whereas in nano-agriculture research, focus has been on nano-fertilizers with 90% contributions. Germany, France, Korea, Italy, Czech Republic, Slovenia and Slovak republic have more than 20% of dedicated nanotechnology firms. A growth of about 45% in nano-food patents has been observed for USA during 2011–2015, and China is leading in the nano-agriculture patents with an increase of 60.7% during 2012–2015.  相似文献   
7.
Environmental Science and Pollution Research - Light absorption enhancement of black carbon due to the aerosol mixing states is an important parameterization for climate modeling, while emission...  相似文献   
8.
Environmental Science and Pollution Research - This research paper deals with the experimental investigation of solar energy–based water purifier (SEBWP) of single-slope type by incorporating...  相似文献   
9.
A study was conducted to test the effects of soil amendments on the bioavailability of heavy metals in a zinc mine tailings containing soil to plants, using the Indian mustard plant (Brassica juncea) as a test organism. Zinc mine tailing containing soil was amended with humus soil (HS) and phosphatic clay (PC). The zinc mine tailing containing soil (ZMTS) was characterized for heavy metals. It was mixed with PC and HS, and four mixtures were prepared. The first mixture contained ZMTS, and served as a control. The second mixture contained ZMTS and PC in the ratio of 1:1 (w/w). The third mixture contained ZMTS and HS in the ratio of 1:1(w/w). The fourth mixture containing ZMTS, PC and HS in the ratio of (2:1:1) (w/w). A slight increase in the bioavailability of Pb, Cu, Zn and Mn was noticed with increase in the incubation time from 14 to 42 days. The bioavailability of Pb, Cu, Zn and Mn from ZMTS alone in Brassica plant was in the range of 94-99% up to 42 days. Addition of PC and HS to the ZMTS soil reduced the bioavailabilities of Pb by (15%), of Cu by (20%), of Zn by (20%) and of Mn by (25%) in the mustard plant. The data showed that PC in the presence of HS had a high affinity for the heavy metals in the order of Pb, Cu, Zn and Mn.  相似文献   
10.
The present investigation was undertaken to assess the biodegradation of phenol by native bacteria strains isolated from coke oven processing wastewater. The strains were designated ESDSPB1, ESDSPB2 and ESDSPB3 and examined for colony morphology Gram stain characters and biochemical tests. Phenol degrading performance of all the strains was evaluated initially. One of the strains namely ESDSPB2 was found to be highly effective for the removal of phenol, which was used as sole carbon and energy source. From an initial concentration of 200 mg I(-1) it degraded to 79.84 +/- 1.23 mg l(-1). In turn the effect of temperature (20 to 45 degrees C), pH (5-10) and glucose concentration (0, 0.25 and 0.5%) on the rate of phenol degradation by that particular strain was investigated. Observations revealed that the rate of phenol biodegradation was significantly affected by pH, temperature of incubation and glucose concentration. The optimal conditions for phenol removal were found to be pH of 7 (84.63% removal), temperature, 30 degrees C (76.69% removal) and 0.25% supplemented glucose level (97.88% removal). The main significance of the study is the utilization of native bacterial strains from the waste water itself having potential of bioremediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号