首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2022年   1篇
  2014年   1篇
  2013年   2篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min?1 under water-saturated conditions. Organic analyses were performed by GC–mass spectrometry, GC–flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60–70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.  相似文献   
2.
Semipermeable membrane devices (SPMDs) previously spiked with performance reference compounds were exposed in wastewater. After 6 days of exposure, 13 polycyclic aromatic hydrocarbons (PAHs) were quantified in SPMDs. Exchange rate constants and time-weighted average (TWA) concentrations of SPMD-available PAHs in water were calculated. The bias of using SPMDs to estimate an actual TWA concentration if the concentration in water fluctuates, as can be expected in wastewater, was studied with numerical simulations. The bias increased with the exchange rate constant. However, most exchange rate constants evaluated in SPMDs exposed in wastewater were small enough for SPMDs to estimate a TWA concentration of PAHs even when the water concentration varied. TWA-SPMD-available concentrations were always below total dissolved (operationally defined as 0.7 microm) concentrations, indicating that part of the dissolved PAHs was not available for sampling. In situ partitioning coefficients K(DOC) were computed and found to be slightly higher than data from the literature. This confirms that only truly dissolved PAHs should be sampled by SPMDs in wastewater.  相似文献   
3.
This study evaluates the influence of a heavily urbanized area (Paris Metropolitan area), on receiving water contamination by both bisphenol A (BPA) and alkylphenol ethoxylate (APE) biodegradation product. The study began by investigating concentrations within urban sources. In addition to the more commonly studied wastewater treatment plant effluent, wet weather urban sources (including combined sewer overflows, urban runoff, and total atmospheric fallout) were considered. The initial results highlight a significant contamination of all urban sources (from a few nanograms per liter in atmospheric fallout to several micrograms per liter in the other sources) with clearly distinguishable distribution patterns. Secondly, concentration changes along the Seine River from upstream of the Paris Metropolitan area to downstream were investigated. While the concentrations of BPA and nonylphenoxy acetic acid (NP1EC) increase substantially due to urban sources, the 4-nonylphenol concentrations remain homogeneous along the Seine. These results suggest a broad dissemination of 4-nonylphenol at the scale of the Seine River basin. Moreover, the relationship between pollutant concentrations and Seine River flow was assessed both upstream and downstream of the Paris conurbation. Consequently, a sharp decrease in dissolved NP1EC concentrations relative to Seine River flow underscores the influence of single-point urban pollution on Seine River contamination. Conversely, dissolved 4-nonylphenol concentrations serve to reinforce the hypothesis of its widespread presence at the Seine River basin scale.  相似文献   
4.
This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.  相似文献   
5.
Environmental Science and Pollution Research - Permanganate is an oxidant usually applied for in situ soil remediation due to its persistence underground. It has already shown great efficiency for...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号