首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2021年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

The novel SARS-CoV-2 outbreak was declared as pandemic by the World Health Organization (WHO) on March 11, 2020. Understanding the airborne route of SARS-CoV-2 transmission is essential for infection prevention and control. In this study, a total of 107 indoor air samples (45 SARS-CoV-2, 62 bacteria, and fungi) were collected from different wards of the Hajar Hospital in Shahrekord, Iran. Simultaneously, bacterial and fungal samples were also collected from the ambient air of hospital yard. Overall, 6 positive air samples were detected in the infectious 1 and infectious 2 wards, intensive care unit (ICU), computed tomography (CT) scan, respiratory patients’ clinic, and personal protective equipment (PPE) room. Also, airborne bacteria and fungi were simultaneously detected in the various wards of the hospital with concentrations ranging from 14 to 106 CFU m?3 and 18 to 141 CFU m?3, respectively. The highest mean concentrations of bacteria and fungi were observed in respiratory patients’ clinics and ICU wards, respectively. Significant correlation (p < 0.05) was found between airborne bacterial concentration and the presence of SARS-CoV-2, while no significant correlation was found between fungi concentration and the virus presence. This study provided an additional evidence about the presence of SARS-CoV-2 in the indoor air of a hospital that admitted COVID-19 patients. Moreover, it was revealed that the monitoring of microbial quality of indoor air in such hospitals is very important, especially during the COVID-19 pandemic, for controlling the nosocomial infections.

  相似文献   
2.

The Mn/Co mixed powders with various Mn/Co molar ratios were prepared by the coprecipitation method and used in low-temperature CO oxidation. The physicochemical characteristics of these powders were characterized using the Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM) analyses. The results demonstrated that the Mn/Co molar ratio significantly affected both the textural and catalytic properties and the sample with a Mn/Co = 1:1 possessed a BET area of 123.7 m2g−1 with a small mean pore size of 6.44 nm. The catalytic results revealed that the pure cobalt and manganese catalysts possessed the low catalytic activity and the pure Co catalyst is not active at temperatures lower than 140 °C. The highest catalytic activity was observed for the catalyst with a Mn/Co = 1. The obtained results showed that the incorporation of Pd into the Mn/Co catalyst significantly enhanced the catalytic activity for oxidation of carbon monoxide and the highest CO conversion was observed for the catalyst with 1 wt.% Pd and this catalyst exhibited a CO conversion of 100% at 80 °C.

  相似文献   
3.

Co-Fe, Cu-Cr, and Co-Mn mixed oxide catalysts were prepared using a one-pot hard template synthesis method, and their catalytic performance was investigated before and after the rearrangement of the template. To evaluate the structural properties of the catalysts, various analyses were employed, including the BET, XRD, H2-TPR, FE-SEM, EDX, and X-ray digital mapping of the elements. The results indicated that the rearrangement of the catalyst structure had a profound effect on the structural and catalytic properties, so that in all three synthesized catalysts, the specific surface and the reducibility increased significantly, and the crystalline structure and morphology of the catalysts changed remarkably. The specific surface area of the CoFe, CuCr, and CoMn catalysts increased from 3.5, 1.1, and 72.9 m2/g to 151.3, 52.8, and 108.0 m2/g, respectively. These structural changes significantly increased the catalytic performance. The results indicated that the 100% conversion temperature of the CoMn catalyst as the optimal sample after rearrangement was reduced from 250 to 125 °C. Also, the stability of the CoMn catalyst in dry and wet conditions was investigated and the results indicated that the presence of water vapor reduced the activity and stability of the catalyst. The activation energy was also calculated on Co-Mn catalyst (59.5 kJ/mol) and the results confirmed that the most probable mechanism for this reaction was the MVK mechanism.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号