首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
安全科学   1篇
环保管理   2篇
基础理论   3篇
污染及防治   3篇
评价与监测   1篇
  2009年   1篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m2 in San Francisco Bay, and 361 and 1153 individuals per 0.25 m2 in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded. Received: 30 March 2000 / Accepted: 21 September 2000  相似文献   
2.
Societal constraints often limit full process restoration in large river systems, making local rehabilitation activities valuable for regeneration of riparian vegetation. A target of much mitigation and restoration is the federally threatened Valley elderberry longhorn beetle and its sole host plant, blue elderberry, in upper riparian floodplain environments. However, blue elderberry ecology is not well understood and restoration attempts typically have low success rates. We determined broad-scale habitat characteristics of elderberry in altered systems and examined associated plant species composition in remnant habitat. We quantified vegetation community composition in 139 remnant riparian forest patches along the Sacramento River and elderberry stem diameters along this and four adjacent rivers. The greatest proportion of plots containing elderberry was located on higher and older floodplain surfaces and in riparian woodlands dominated by black walnut. Blue elderberry saplings and shrubs with stems <5.0 cm in diameter were rare, suggesting a lack of recruitment. A complex suite of vegetation was associated with blue elderberry, including several invasive species which are potentially outcompeting seedlings for light, water, or other resources. Such lack of recruitment places increased importance on horticultural restoration for the survival of an imperiled species. These findings further indicate a need to ascertain whether intervention is necessary to maintain functional and diverse riparian woodlands, and a need to monitor vegetative species composition over time, especially in relation to flow regulation.  相似文献   
3.
A model of fishing vessel accident probability   总被引:5,自引:0,他引:5  
Problem: Commercial fishing is one of the least safe occupations. Method: The researchers develop a fishing vessel accident probability model for fishing areas off the northeastern United States using logit regression and daily data from 1981 to 1993. Results: The results indicate that fishing vessel accident probability declined over the study period. Higher wind speed is associated with greater accident probability. Medium-size vessels have the highest accident probability, while small vessels have the lowest. Within the study region, accident probability is lower in the southwestern section than in the northeastern section. Accidents are likely to occur closer to shore than offshore. Accident probability is lowest in spring. Impact on Industry: The probability model is an important building block in development and quantitative assessment of management mechanisms related to safety in the commercial fishing industry.  相似文献   
4.
U.S. laws require that contaminant bioaccumulation potential be evaluated before dredged material can be recycled. Simple fugacity models, e.g. organic contaminant aqueous partition coefficient (K oc)-derived theoretical bioaccumulation potential, are commonly used to estimate the partitioning of hydrophobic organic contaminants between sediment organic matter and organism lipid. K oc-derived models, with or without the addition of a soot carbon term, did not accurately or consistently predict total polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls partitioning of eight sediments from ongoing dredging operations onto C18-coated filter paper. These models also failed to predict the partitioning of individual PAHs from these eight sediments. These data underscore the trade-offs between the ease of using simple models and the uncertainty of predicted partitioning values.  相似文献   
5.
Pirnie EF  Talley JW  Hundal LS 《Chemosphere》2006,65(9):1576-1582
Significant concentrations of chlorinated pesticides such as 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its two main transformation products, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) are still present in soil and sediment systems more than 30 years after DDT use was banned in the United States. DDT enters waterways via the runoff from industrial point sources, agricultural lands and atmospheric deposition. We evaluated zero-valent iron (Fe(0)), ferrous sulfide (FeS), as well as combining them with hydrogen peroxide (H(2)O(2)) as viable treatment technologies for degrading DDT in an aqueous solution. Treatment of DDT with Fe(0) and FeS resulted in approximately 88% and 56% transformation of DDT within 150h, respectively. DDE production was insignificant in all systems. The DDT removal was slower with FeS than with Fe(0), but the amounts of DDD and DDE produced did not exceed baseline. Treatment with a 1:1 mixture of Fe(0)-FeS removed about 95% of the added mass of DDT within 4days and generated significant amounts of DDD and minor amounts of DDMU. When small amounts of H(2)O(2) were introduced halfway through the Fe(0) and FeS treatment times, the mass of DDT decreased by 87% and 96%, respectively, within 2days. Our results demonstrate that mixtures of Fe(0)-FeS in combination with H(2)O(2) can be used for rapid and efficient removal of DDT from aqueous solutions.  相似文献   
6.
Survey techniques for larval salamanders vary in their effectiveness and efficiencies. In this study, the leaf litterbag sampling technique was employed to gather data on larval salamander populations in perennial streams of southern Georgia. Salamanders were collected monthly for 12 months to analyze capture counts and population size-class structure. Simultaneous dipnet sweep data were used to examine potential count data biases of the leaf litterbag sampling technique. In both leaf litterbag and dipnet sweep surveys, adult and larval Southern Two-lined Salamanders (Eurycea cirrigera) and larval Southern Red Salamanders (Pseudotriton ruber) were sampled. In leaf litterbags, larval E. cirrigera were captured most frequently, followed by adult E. cirrigera and larval P. ruber, respectively. However, the efficiency of collecting adult E. cirrigera and larval P. ruber could not be determined because of small sample sizes. Larval E. cirrigera counts detected from leaf litterbags were frequently lower than those associated with dipnet sweeps, suggesting that the former may underestimate larval salamander counts. Leaf litterbags successfully detected all E. cirrigera size-classes (i.e., first-year, second-year, and adult), further indicating that larvae in Georgia spend 2 years in the aquatic phase. Leaf litterbags are an effective method of sampling larval salamanders when used to assess species assemblage and age-class distribution.  相似文献   
7.
Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water.  相似文献   
8.
Talley TS 《Ecology》2007,88(6):1476-1489
Patches, gradients, and hierarchies are three common organizational frameworks for assessing the effects of spatial heterogeneity on species distributions. Since these frameworks are often chosen a priori, without knowledge of study systems, they may not correspond to the empirical heterogeneity present and may result in partial or erroneous conclusions about the forces structuring species distributions. I tested the consequences of choosing particular frameworks and whether patch heterogeneity structured patchily distributed populations of the valley elderberry longhorn beetle (Desmocerus californicus dimorphus) along four rivers in California's Central Valley (USA). A comparison of the three approaches revealed that each led to incomplete conclusions about controls on the beetle's distribution and populations. Patch analysis revealed weak effects of patch size and quality, and high unexplained variance, which likely reveals large amounts of stochasticity since replication was high. The patch analysis therefore concluded that distributions consistent with patch dynamic structures like classic metapopulation, source-sink, and mainland-island models existed in the different rivers. Conversely, gradient analyses revealed a gradient-distribution pattern responding to continuous and often large-scale variables, such as host-plant age or size, water availability, and the presence of an invasive leguminous tree; again most variance in beetle occurrence remained unexplained. Hierarchical analysis identified the natural spatial patterns of the system but gave no indication of causal processes. The combination of all three approaches explained the maximum variance in beetle occurrence, through inclusion of a comprehensive list of explanatory variables, multiple spatial scales, various types of heterogeneity, and a focus on the scales at which beetle-environment interactions were strongest. Surprisingly, these results still supported the notion that the beetle exists as a metapopulation, a structure thought to be rare because it ignores habitat quality and landscape conditions. These analyses exemplify the simultaneous importance of local patch attributes and broad-scale and/or gradient variables that are commonly overlooked in patch studies. Importantly, some patch attributes acted over inter-patch scales, affecting the perception of patch distances and distributional extents. Only through the integration of frameworks was I able to decipher the system's complexity and see that all three types of heterogeneity were acting in the system, sometimes over unexpected scales.  相似文献   
9.
Nicholl SI  Talley JW 《Chemosphere》2006,63(1):132-141
The physical availability of hydrophobic organic contaminants (HOCs) bound to soils and sediments often controls their environmental toxicity. Currently, complicated and time extensive procedures are necessary to determine physical availability. The development of thermal programmed desorption mass spectrometry (TPD-MS) techniques for environmental samples may make it possible to evaluate the physical availability of HOCs in soils and sediments and also calculate relevant release energy values for bound contaminants. This work focused on developing the analytical protocols and data processing requirements for studying the desorption of HOCs from various simple geosorbents using TPD-MS. The work seeks to document the use of the TPD-MS method as an environmental assessment tool and provide the reader with a working knowledge of the entire process.  相似文献   
10.
We combined a natural experiment with field surveys and GIS to investigate the effects of dust from recreational trails and access roads on the federally threatened Valley elderberry longhorn beetle (“VELB,” Desmocerus californicus dimorphus) and its host plant, elderberry (Sambucus mexicana). Dust is listed in the species recovery plan as a threat to the VELB and unpaved surfaces are common throughout the riparian corridors where the VELB lives, yet the effects of dust on the VELB have been untested. We found that dust deposition varied among sites and was highest within 10 m of trails and roads, but was similar adjacent to dirt and paved surfaces within sites. Elderberry density did not differ with distance from dirt surfaces. Despite similar within-site dust levels, elderberry adjacent to paved surfaces were less stressed than those near dirt ones, possibly because increased runoff from paved surfaces benefited elderberry. Dust deposition across sites was weakly correlated with elderberry stress symptoms (e.g., water stress, dead stems, smaller leaves), indicating that ambient dust (or unmeasured correlates) influenced elderberry. Direct studies of the VELB showed that its distribution was not negatively affected by the proximity to dirt surfaces. Dust from low traffic dirt and paved access roads and trails, therefore, affected VELB presence neither directly nor indirectly through changed elderberry condition. These results suggest that the placement of VELB mitigation, restoration, and conservation areas can proceed independently of access roads if dust and traffic levels do not exceed those in our study site. Furthermore, dust control measures are likely to be unnecessary under such conditions. The potential effects of increased traffic and dust levels are addressed through a literature review.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号