首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
污染及防治   3篇
  2021年   1篇
  2016年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
INTENTION, GOAL, SCOPE, BACKGROUND: Advanced oxidation processes are powerful methods which are capable of transforming refractory, nonbiodegradable and/or toxic organic compounds into harmless end products such as carbon dioxide and water. However, one commen problem of all advanced oxidation processes is the high demand of electrical energy for ultraviolet lamps, which causes high operational costs. Minimization of the required irradiation time, and therefore the energy consumption, by optimization of other reaction conditions such as catalyst-oxidant type and concentration, pH, temperature, pollutant/oxidant ratio etc., therefore continues to gain importance. OBJECTIVE: The main objective of this study was the minimization of the required irradiation time through optimization of the use of a newly patented catalyst, ferrioxalate, and also to compare the performance of this catalyst with the performance of other AOPs. METHODS: Oxidation of 4-chlorophenol by photo-Fenton process using potassium ferrioxalate as a mediator was studied in a lab scale photoreactor. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations, initial pH, power-output, oxalate/iron ratio and different iron sources was evaluated. An upflow photoreactor equipped with a 1000 Watt high-pressure mercury vapour lamp and operating in a recirculation mode was used during photodegradation experiments. The extent of the reduction of 4-chlorophenol, Total Organic Carbon and Chemical Oxygen Demand was used to evaluate the photodegradation reaction. RESULTS AND DISCUSSION: The optimum pH range observed was found to be 2.7-3. The efficiency of 4-chlorophenol oxidation increased with increasing concentrations of hydrogen peroxide and ferrioxalate, reaching a plateau after the addition of 10 and 0.072 mM of those reagents, respectively. Using an Oxalate/iron ratio of 12 was 18% less efficient than using a ratio of 3:1. The efficiency increased with increasing radiation power. However, this increase was not linear. The UV/ferrioxalate/H2O2 process, by which complete mineralization of 100 mg l(-1) 4-chlorophenol was achieved in 20 min of total reaction time, was the most efficient process among the alternatives applied. CONCLUSIONS: The use of ferrioxalate as the catalyst was found to be more efficient than the use of Fe(II) and Fe(III) iron species. It was possible to completely mineralize 4-chlorophenol. RECOMMENDATION AND OUTLOOK: The results of this study demonstrate that the ferrioxalate-mediated degradation of 4-chlorophenol requires less irradiation times than other advanced oxidation processes. There are mainly 19 phenol isomers and other toxic and nonbiodegradable organic compounds. We recommend that similar studies should be performed on many such compounds in order to attain a clear understanding of the performance of this catalyst. Because of its light sensitivity, this catalyst should be used immediately after its preparation. The use of low pressure mercury vapour lamps in this process should also be considered, since low power outputs may be enough for the process.  相似文献   
2.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   
3.
Waste cooking oil (WCO) was experimentally examined to determine whether it can be used as an alternative fuel in a 3-cylinder, 4-stroke, direct injection, 48 kW power tractor engine. The test engine was operated under full load conditions using diesel fuel and waste vegetable oil from the 2400 to 1100 rpm and performance values were recorded. Tests were performed in two stages to evaluate the effect of the waste oils on the engine life cycle. When the test engine was operated with diesel fuel and waste cooking oil; engine torque decreased between at ratio of 0.09 % and 3% according to the engine speed. While no significant difference occurs in the diesel fuel tests at the end of 100 hours of operation, an important reduction was observed in the engine torque of the WCO engine between 4.21% and 14.48% according to the engine speed, and an increase in average smoke opacity ratio was also observed. In accordance with the results obtained from the studies, it was determined that the engine performance values of waste cooking oil show similar properties with diesel fuel, but in long-term usage, performance losses increased. In the SEM analysis performed on the fuel system, there were dark deposits at the nozzle tip and stem. According to an EDX analysis at the nozzle tips, the detected elements point to engine oil ash in the combustion chamber and show coking products (C and O). The other elements (Na, S, Ca, P, Cl, and K) point to used WCO.  相似文献   
4.

Studies on the production of biogas of different organic materials in an anaerobic environment are being carried out all over the world. The most important parameters in these researches can be listed as raw material potential, production processes, economic analyses, and environmental effects. Chicken manure is one of the raw materials used in biogas production. In this study, in addition to the analysis of biogas and energy production potential from chicken manure, greenhouse gas emissions were analyzed to evaluate environmental effects. In Turkey, chicken manure is not adequately processed and causes environmental pollution. The model biogas plant and potential energy generation were researched in this field study. The pilot plant produces 8.58 million m3 of biogas per year by processing about 110 thousand tons of waste. It produces 17 GWh/year of electricity and 16 GWh/year of thermal energy, as well as reducing CO2 greenhouse gas emissions by 13.86 thousand tons/year.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号