首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   3篇
环保管理   1篇
综合类   5篇
评价与监测   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2002年   2篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Studies were conducted to investigate the hypothesis that N-nitrosodimethylamine (NDMA) is a potential disinfection by-product specifically produced during chlorination or chloramination. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed by the reaction of DMA with free chlorine in the presence of ammonia and also with monochloramine. We proposed a mechanism for NDMA formation in chlorinated or chloraminated water, which does not require nitrite as in N-nitrosation. The critical NDMA formation reactions consist of (i) the formation of monochloramine by combination of free chlorine with ammonia, (ii) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (iii) the oxidation of UDMH by monochloramine to NDMA, and (iv) the reversible chlorine transfer reaction between free chlorine/monochloramine and DMA which is parallel with (i) and (ii). A kinetic model was also developed to validate the proposed mechanism.  相似文献   
3.
4.
5.
Chloramines,in practice,are formed onsite by adding ammonia to chlorinated drinking water to achieve the required disinfection.While regulated disinfection byproducts(DBPs)are reduced during chloramine disinfection,other DBPs such as iodinated(iodo-)DBPs,that elicit greater toxicity are formed.The objective of this study was to investigate the impact of prechlorination time on the formation of both halogen-specific total organic halogen(TOX)and iodo/chlorinated(chloro-)DBPs during prechlorination/chloramination in source waters(SWs)containing iopamidol,an X-ray contrast medium.Barberton SW(BSW)and Cleveland SW(CSW)containing iopamidol were prechlorinated for 5–60 min and afterwards chloraminated for 72 hr with ammonium chloride.Chlorine contact time(CCT)did not significantly impact total organic iodine(TOI)concentrations after prechlorination or chloramination.Concentrations of total organic chlorine(TOCl)formed during prechlorination did not significantly change regardless of pH and prechlorination time,whileTOClappearedtodecreaseafter 72 hrchloraminationperiod.Dichloroiodomethane(CHCl_2I)formation during prechlorination did not exhibit any significant trends as a function of p H or CCT,but after chloramination,significant increases were observed at pHs 6.5 and 7.5 with respect to CCT.Iodo-HAAs were not formed during prechlorination but were detected after chloramination.Significant quantities of chloroform(CHCl_3)and trichloroacetic acid(TCAA)were formed during prechlorination but formation ceased upon ammonia addition.Therefore,prechlorination studies should measure TOX and DBP concentrations prior to ammonia addition to obtain data regarding the initial conditions.  相似文献   
6.
The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.  相似文献   
7.
This study investigated the speciation of halogen-specific total organic halogen and disinfection byproducts(DBPs) upon chlorination of natural organic matter(NOM) in the presence of iopamidol and bromide(Br~-).Experiments were conducted with low bromide source waters with different NOM characteristics from Northeast Ohio,USA and varied spiked levels of bromide(2-30 μmol/L) and iopamidol(1-5 μmol/L).Iopamidol was found to be a direct precursor to trihalomethane(THM) and haloacetic acid formation,and in the presence of Br~-favored brominated analogs.The concentration and speciation of DBPs formed were impacted by iopamidol and bromide concentrations,as well as the presence of NOM.As iopamidol increased the concentration of iodinated DBPs(iodo-DBPs) and THMs increased.However,as Br~-concentrations increased,the concentrations of nonbrominated iodo-and chloro-DBPs decreased while brominated-DBPs increased.Regardless of the concentration of either iopamidol or bromide,bromochloroiodomethane(CHBrClI) was the most predominant iodo-DBP formed except at the lowest bromide concentration studied.At relevant concentrations of iopamidol(1 μmol/L) and bromide(2 μmol/L),significant quantities of highly toxic iodinated and brominated DBPs were formed.However,the rapid oxidation and incorporation of bromide appear to inhibit iodoDBP formation under conditions relevant to drinking water treatment.  相似文献   
8.
Free chlorine has been used extensively as a primary and secondary disinfectant for potable water. Where it is difficult to maintain a free chlorine residual or when disinfection by-products (DBPs) are of concern, monochloramine has been used to provide a stable disinfectant residual in distributions systems. Reactions of disinfectants, free chlorine or monochloramine, with natural organic matter (NOM) consequently result in the formation of DBPs such as trihalomethanes and haloacetic acids. However, few studies have focused on the fate and kinetics of monochloramine loss in the presence of reactive constituents such as NOM. Monochloramine is inherently unstable and decays even without reactive constituents present via a mechanism known as autodecomposition. Therefore, to predict monochloramine concentrations in the presence of NOM is clearly associated with the ability to adequately model autodecomposition. This study presents the results of a semi-mechanisiic model capable of predicting the loss of monochloramine in the presence of humic material in the pH range of 6.55-8.33. The model accounts for both fast and a slow monochloramine demand to explain the loss of monochloramine over the pH range of this study. The formation of dichloroacetic acid was also predicted due to the ability of the model to differentiate monochloramine reaction pathways in the presence NOM. The results shown here demonstrate the ability of a semi-mechanistic model to predict monochloramine residuals and DBP formation in the presence of humic material.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号