首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26898篇
  免费   386篇
  国内免费   399篇
安全科学   893篇
废物处理   1192篇
环保管理   3721篇
综合类   4069篇
基础理论   7011篇
环境理论   10篇
污染及防治   7264篇
评价与监测   1704篇
社会与环境   1652篇
灾害及防治   167篇
  2023年   129篇
  2022年   275篇
  2021年   271篇
  2020年   250篇
  2019年   228篇
  2018年   440篇
  2017年   421篇
  2016年   652篇
  2015年   497篇
  2014年   721篇
  2013年   2161篇
  2012年   941篇
  2011年   1352篇
  2010年   1011篇
  2009年   1114篇
  2008年   1287篇
  2007年   1340篇
  2006年   1140篇
  2005年   945篇
  2004年   911篇
  2003年   910篇
  2002年   840篇
  2001年   1061篇
  2000年   792篇
  1999年   467篇
  1998年   326篇
  1997年   350篇
  1996年   342篇
  1995年   413篇
  1994年   322篇
  1993年   301篇
  1992年   285篇
  1991年   283篇
  1990年   293篇
  1989年   289篇
  1988年   238篇
  1987年   211篇
  1986年   209篇
  1985年   223篇
  1984年   265篇
  1983年   217篇
  1982年   243篇
  1981年   220篇
  1980年   176篇
  1979年   207篇
  1978年   130篇
  1977年   142篇
  1975年   134篇
  1974年   138篇
  1972年   131篇
排序方式: 共有10000条查询结果,搜索用时 386 毫秒
1.
Russian Journal of Ecology - Climate change entails shifts in the ranges of woody plants along both latitudinal and altitudinal gradients in the boreal forest biome. In this study,...  相似文献   
2.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
3.
Objective: There have been substantial reductions in motor vehicle crash–related child fatalities due to advances in legislation, public safety campaigns, and engineering. Less is known about non-traffic injuries and fatalities to children in and around motor vehicles. The objective of this study was to describe the frequency of various non-traffic incidents, injuries, and fatalities to children using a unique surveillance system and database.

Methods: Instances of non-traffic injuries and fatalities in the United States to children 0–14 years were tracked from January 1990 to December 2014 using a compilation of sources including media reports, individual accounts from families of affected children, medical examiner reports, police reports, child death review teams, coroner reports, medical professionals, legal professionals, and other various modes of publication.

Results: Over the 25-year period, there were at least 11,759 events resulting in 3,396 deaths. The median age of the affected child was 3.7 years. The incident types included 3,115 children unattended in hot vehicles resulting in 729 deaths, 2,251 backovers resulting in 1,232 deaths, 1,439 frontovers resulting in 692 deaths, 777 vehicles knocked into motion resulting in 227 deaths, 415 underage drivers resulting in 203 deaths, 172 power window incidents resulting in 61 deaths, 134 falls resulting in 54 deaths, 79 fires resulting in 41 deaths, and 3,377 other incidents resulting in 157 deaths.

Conclusions: Non-traffic injuries and fatalities present an important threat to the safety and lives of very young children. Future efforts should consider complementary surveillance mechanisms to systematically and comprehensively capture all non-traffic incidents. Continued education, engineering modifications, advocacy, and legislation can help continue to prevent these incidents and must be incorporated in overall child vehicle safety initiatives.  相似文献   

4.
Weather variability has the potential to influence municipal water use, particularly in dry regions such as the western United States (U.S.). Outdoor water use can account for more than half of annual household water use and may be particularly responsive to weather, but little is known about how the expected magnitude of these responses varies across the U.S. This nationwide study identified the response of municipal water use to monthly weather (i.e., temperature, precipitation, evapotranspiration [ET]) using monthly water deliveries for 229 cities in the contiguous U.S. Using city‐specific multiple regression and region‐specific models with city fixed effects, we investigated what portion of the variability in municipal water use was explained by weather across cities, and also estimated responses to weather across seasons and climate regions. Our findings indicated municipal water use was generally well‐explained by weather, with median adjusted R2 ranging from 63% to 95% across climate regions. Weather was more predictive of water use in dry climates compared to wet, and temperature had more explanatory power than precipitation or ET. In response to a 1°C increase in monthly maximum temperature, municipal water use was shown to increase by 3.2% and 3.9% in dry cities in winter and summer, respectively, with smaller changes in wet cities. Quantifying these responses allows urban water managers to plan for weather‐driven variability in water use.  相似文献   
5.
6.
Conservation conflicts are gaining importance in contemporary conservation scholarship such that conservation may have entered a conflict hype. We attempted to uncover and deconstruct the normative assumptions behind such studies by raising several questions: what are conservation conflicts, what justifies the attention they receive, do conservation-conflict studies limit wildlife conservation, is scientific knowledge stacked against wildlife in conservation conflicts, do conservation-conflict studies adopt a specific view of democracy, can laws be used to force conservation outcomes, why is flexibility needed in managing conservation conflicts, can conservation conflicts be managed by promoting tolerance, and who needs to compromise in conservation conflicts? We suggest that many of the intellectual premises in the field may defang conservation and prevent it from truly addressing the current conservation crisis as it accelerates. By framing conservation conflicts as conflicts between people about wildlife or nature, the field insidiously transfers guilt, whereby human activities are no longer blamed for causing species decline and extinctions but conservation is instead blamed for causing social conflicts. When the focus is on mitigating social conflicts without limiting in any powerful way human activities damaging to nature, conservation-conflict studies risk keeping conservation within the limits of human activities, instead of keeping human activities within the limits of nature. For conservation to successfully stop the biodiversity crisis, we suggest the alternative goal of recognizing nature's right to existence to maintenance of ecological functions and evolutionary processes. Nature being a rights bearer or legal person would imply its needs must be explicitly taken into account in conflict adjudication. If, even in conservation, nature's interests come second to human interests, it may be no surprise that conservation cannot succeed.  相似文献   
7.
This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography–photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1–115.5?days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12?h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.  相似文献   
8.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
9.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号