首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   30篇
  国内免费   15篇
安全科学   20篇
废物处理   11篇
环保管理   150篇
综合类   85篇
基础理论   161篇
环境理论   1篇
污染及防治   148篇
评价与监测   36篇
社会与环境   36篇
灾害及防治   5篇
  2024年   2篇
  2023年   4篇
  2022年   14篇
  2021年   12篇
  2020年   9篇
  2019年   11篇
  2018年   24篇
  2017年   26篇
  2016年   33篇
  2015年   30篇
  2014年   24篇
  2013年   49篇
  2012年   36篇
  2011年   61篇
  2010年   32篇
  2009年   23篇
  2008年   36篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   19篇
  2003年   19篇
  2002年   19篇
  2001年   15篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1966年   1篇
  1963年   2篇
  1942年   1篇
排序方式: 共有653条查询结果,搜索用时 15 毫秒
1.
2.
A combination of poor mining methods, waste storage and disposal systems, as well as the day-to-day activities associated with tribute and contract chromite mining are primarily responsible for environmental problems on the Zimbabwe Great Dyke. For instance, the unsystematic dumping of waste rocks in rivers blocks channels and results in flooding, which further sterilizes agricultural land and mineral resources. Erosion of these haphazardly located dumps causes siltation of water bodies and results in the dispersion of heavy metals in soils and watercourses. Vegetation growth on waste dumps is limited and constrained by the high pH levels from phytotoxic metals in soils, the lack of nutrients, poor moisture retention qualities of the mining waste and critical cation imbalances within dumps. This article attributes poor environmental management on the Dyke to poverty, a direct result of the nature of tribute agreements and output prices. Prices based on output targets are exploitative and undervalue labour and thus perpetuate poverty. By absolving claim holders from environmental liability, tribute agreements contribute directly to environmental problems. Thus, the incorporation of enforceable dual environmental responsibility requirements in contract mining agreements is needed to overcome this problem. This article recommends that, to break the poverty cycle, the primary cause of environmental mismanagement in the sector, miners need to be empowered through claim ownership and the enhancement of their capacity to negotiate prices with buyers of chrome.  相似文献   
3.
In 1964, Walter Rothenbuhler proposed a two-gene model to explain phenotypic variance in the remarkable behavior in which honey bee workers remove dead brood from their colonies. Rothenbuhler's model proposed that one locus controls the uncapping of brood cells containing dead pupae, while a second controls the removal of the cell contents. We show here, through molecular techniques and quantitative trait loci (QTL) linkage mapping, that the genetic basis of hygienic behavior is more complex, and that many genes are likely to contribute to the behavior. In our cross, we detected seven suggestive QTLs associated with hygienic behavior. Each detected QTL controlled only 9-15% of the observed phenotypic variance in the character.  相似文献   
4.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   
5.
6.
Industrial agriculture is yearly responsible for the loss of 55–100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.  相似文献   
7.
Emergency mortality composting associated with a disease outbreak has special requirements to reduce the risks of pathogen survival and disease transmission. The most important requirements are to cover mortalities with biosecure barriers and avoid turning compost piles until the pathogens are inactivated. Temperature is the most commonly used parameter for assessing success of a biosecure composting process, but a decline in compost core temperature does not necessarily signify completion of the degradation process. In this study, gas concentrations of volatile organic compounds (VOCs) produced inside biosecure swine mortality composting units filled with six different cover/plant materials were monitored to test the state and completion of the process. Among the 55 compounds identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the process. Temperature at the end of eight weeks was not found as an indicator of swine carcass degradation. However, gas concentrations of the marker compounds at the end of eight weeks were found to be related to carcass degradation. The highest gas concentrations of the marker compounds were measured for the test units with the lowest degradation (highest respiration rates). Dimethyl disulfide was found to be the most robust marker compound as it was detected from all composting units in the eighth week of the trial. Concentration of dimethyl disulfide decreased from a range of 290–4340 ppmv to 6–160 ppbv. Dimethyl trisulfide concentrations decreased to a range of below detection limit to 430 ppbv while pyrimidine concentrations decreased to a range of below detection limit to 13 ppbv.  相似文献   
8.
Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.  相似文献   
9.
Environmental Science and Pollution Research - In the energy-environment literature, a handful of the advanced economies, mostly the European Union countries, have met some of the national...  相似文献   
10.
Biodissolution experiments on cinnabar ore(mercury sulphide and other sulphide minerals,such as pyrite) were performed with microorganisms extracted directly from soil. These experiments were carried out in closed systems under aerobic and anaerobic conditions with 2 different soils sampled in French Guyana. The two main objectives of this study were(1) to quantify the ability of microorganisms to mobilize metals(Fe, Al, Hg) during the dissolution of cinnabar ore, and(2) to identify the links between the type and chemical properties of soils, environmental parameters such as season and the strategies developed by indigenous microorganisms extracted from tropical natural soils to mobilize metals.Results indicate that microbial communities extracted directly from various soils are able to(1) survive in the presence of cinnabar ore, as indicated by consumption of carbon sources and,(2) leach Hg from cinnabar in oxic and anoxic dissolution experiments via the acidification of the medium and the production of low molecular mass organic acids(LMMOAs). The dissolution rate of cinnabar in aerobic conditions with microbial communities ranged from 4.8 × 10~(-4) to 2.6 × 10~(-3) μmol/m~2/day and was independent of the metabolites released by the microorganisms. In addition, these results suggest an indirect action by the microorganisms in the cinnabar dissolution. Additionally, because iron is a key element in the dynamics of Hg, microbes were stimulated by the presence of this metal,and microbes released LMMOAs that leached iron from iron-bearing minerals, such as pyrite and oxy-hydroxide of iron, in the mixed cinnabar ore.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号