首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   11篇
  国内免费   32篇
安全科学   42篇
废物处理   63篇
环保管理   53篇
综合类   78篇
基础理论   100篇
污染及防治   224篇
评价与监测   62篇
社会与环境   32篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   4篇
  2019年   13篇
  2018年   22篇
  2017年   22篇
  2016年   37篇
  2015年   19篇
  2014年   30篇
  2013年   52篇
  2012年   46篇
  2011年   47篇
  2010年   26篇
  2009年   36篇
  2008年   51篇
  2007年   49篇
  2006年   47篇
  2005年   32篇
  2004年   17篇
  2003年   19篇
  2002年   23篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有654条查询结果,搜索用时 62 毫秒
1.
Air inside poultry houses must be removed on a regular basis to prevent excess of heat, particles and noxious gases that can imperil animals. To cope with this issue, natural ventilation could be an effective method when assisted by accurate predictions. This study investigates air discharges caused by natural ventilation of a poultry house by means of a three-dimensional computational fluid dynamics (CFD) model. It solves the governing equations of momentum, heat and mass transport, radiative transfers and animal-generated heat. Wind directions of 0°, 36° and 56° (0° corresponds to a wind blowing perpendicular to the ridgeline) were investigated; the CFD model predictions achieved a RMSE of 1.2 °C and 0.6 g[H2O] kg?1 [dry air] for internal temperature and absolute humidity, respectively, when air blew with an angle of 36°. Air renewal rates (ARR) were 39.5 (±?1.9), 34.9 (±?2.2) and 33.6 (±?1.7) volumes of the building per hour, when air blew at 0°, 36° and 56°, respectively. Such ARR predictions served to know how the gases contained in air would likely spread downstream from the building in order to define regions of potentially high gas concentration that could endanger neighbouring habitable facilities.  相似文献   
2.
为了研究不同好氧预处理方式对餐厨垃圾厌氧消化产甲烷的影响,通过建立3个模拟厌氧生物反应器,研究了传统厌氧生物反应器C1、上层好氧预处理-厌氧生物反应器C2和底部好氧预处理-厌氧生物反应器C3 3种不同操作条件下的产甲烷过程.结果表明,挥发性有机酸的累积使C1始终处于产甲烷滞后阶段;而C2、C3的好氧预处理通过加快易水解酸化组分和过量挥发性有机酸的好氧降解,有效缓解了酸性抑制,产甲烷滞后时间明显缩短至10 d内.第32天C2停止上层曝气后,在27 d内甲烷浓度达到了50%以上,同时,产甲烷速率迅速上升,并在第81天可达到峰值773 mL/(kg·d).C3在第11天停止底部曝气后,虽然经过22 d的时间甲烷浓度即上升至50%,但之后产甲烷速率经历回落阶段后再次逐渐上升,在实验结束时仅达到517 mL/(kg·d).上层曝气的好氧预处理方式所需曝气时间相对较长,但其产甲烷启动快,与底部曝气相比,其后期的甲烷化过程更稳定并可达到较高的产甲烷速率.  相似文献   
3.
4.
Journal of Material Cycles and Waste Management - The recent emergence of the COVID-19 pandemic has contributed to the drastic production and use of healthcare and personal protective equipment,...  相似文献   
5.
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH4+-N concentration decreased because of ammonification which was then followed by nitrification. The NO4+-N and NO4+-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased.  相似文献   
6.
7.
8.
9.
Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day).

Implications: In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.  相似文献   

10.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号