首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   2篇
  国内免费   6篇
安全科学   9篇
废物处理   15篇
环保管理   12篇
综合类   11篇
基础理论   28篇
污染及防治   77篇
评价与监测   30篇
社会与环境   10篇
灾害及防治   3篇
  2023年   4篇
  2022年   32篇
  2021年   16篇
  2020年   5篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   15篇
  2015年   14篇
  2014年   10篇
  2013年   25篇
  2012年   12篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1993年   1篇
排序方式: 共有195条查询结果,搜索用时 31 毫秒
1.
Environmental Science and Pollution Research - Chromium (Cr) is a biologically non-essential, carcinogenic and toxic heavy metal. The cultivation of Cr-tolerant genotypes seems the most favorable...  相似文献   
2.
Environmental Science and Pollution Research - The objective of the present study was to investigate the level of 16 PAHs in fruit juice samples (orange, apple, peach, pineapple, and mango) with...  相似文献   
3.

Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009–2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha−1) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha−1 in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha−1. However, the highest RUEGY was observed by application of 250 kg N ha−1. In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha−1, while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha−1. The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices for the environmental conditions resembling to those of this study.

  相似文献   
4.
Background. Unsafe behavior is closely related to occupational accidents. Work pressure is one the main factors affecting employees’ behavior. The aim of the present study was to provide a path analysis model for explaining how work pressure affects safety behavior. Methods. Using a self-administered questionnaire, six variables supposed to affect safety employees’ behavior were measured. The path analysis model was constructed based on several hypotheses. The goodness of fit of the model was assessed using both absolute and comparative fit indices. Results. Work pressure was determined not to influence safety behavior directly. However, it negatively influenced other variables. Group attitude and personal attitude toward safety were the main factors mediating the effect of work pressure on safety behavior. Among the variables investigated in the present study, group attitude, personal attitude and work pressure had the strongest effects on safety behavior. Conclusion. Managers should consider that in order to improve employees’ safety behavior, work pressure should be reduced to a reasonable level, and concurrently a supportive environment, which ensures a positive group attitude toward safety, should be provided. Replication of the study is recommended.  相似文献   
5.
In this work, the influence of four variable parameters including fiber types (poplar and rice straw), fiber contents (45, 60, and 75 wt%), fiber sizes (20–40 and 40–60 mesh), and blending methods (hot-pressing and extrusion) on the physico-mechanical properties of wood plastic composite panels were studied. Generally, the results showed that each of the above-mentioned parameters had significant effect on the nail and screw withdrawal strength (pull-out load) and density, whereas their interactions did not have highly impressive effects on the properties. All tested properties vary significantly with fiber origin. Composites filled with larger fiber size, produced panels with higher withdrawal strength and density. The effect of blending method on density was maximal. Withdrawal strength values of each sample decreased with increase in fiber loading. The lowest withdrawal strength values of nail and screw were obtained from the samples filled with rice straw. It was found that strength properties of the composites can be improved moderately by adding 45 wt% fiber, 20–40 mesh particle and poplar flour. According to the results, the blending method is a significant variable in the determination of withdrawal strength. Therefore, the blending method can be recommended based on the end product applications.  相似文献   
6.
Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress.  相似文献   
7.
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 °C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.  相似文献   
8.
Healthcare settings present a challenging environment for assessing low-level concentrations of specific volatile organic compounds (VOCs) in the presence of high background concentrations of alcohol from the use of hand sanitizers and surface disinfectants. The purposes of this laboratory-based project were to develop and validate a sampling and analysis methodology for quantifying low-level VOC concentrations as well as high-level alcohol concentrations found together in healthcare settings. Sampling was conducted using evacuated canisters lined with fused silica. Gas chromatography/mass spectrometry analysis was performed using preconcentration (for ppb levels) and loop injection (for ppm levels). For a select list of 14 VOCs, bias, precision, and accuracy of both the preconcentration and loop injection methods were evaluated, as was analyte stability in evacuated canisters over 30 days. Using the preconcentration (ppb-level) method, all validation criteria were met for 13 of the 14 target analytes-ethanol, acetone, methylene chloride, hexane, chloroform, benzene, methyl methacrylate, toluene, ethylbenzene, m,p-xylene, o-xylene, alpha-pinene, and limonene. Using the loop injection (ppm-level) method, all validation criteria were met for each analyte. At ppm levels, alpha-pinene and limonene remained stable over 21 days, while the rest of the analytes were stable for 30 days. All analytes remained stable over 30 days at ppb levels. This sampling and analysis approach is a viable (i.e., accurate and stable) methodology that will enable development of VOC profiles for mixed exposures experienced by healthcare workers.  相似文献   
9.
Environmental Science and Pollution Research - The unconventional energy sources like hydrogen energy have tremendous potential of filling the gap between economic growth and clean energy...  相似文献   
10.
This study was performed to investigate the possible sources as well as seasonal and diurnal variations of indoor air pollutants in widely used four different environments (house, office, kindergarten, and primary school) in which people spend most of their time. Bioaerosol levels and species, volatile organic compound (VOC) levels, and PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) levels were determined in different parts of these environments in parallel with outdoor sampling. Air pollution samplings were carried out in each microenvironment during five subsequent days in both winter and summer in Ankara, Turkey. The results indicated that bioaerosol, VOC, and PM2.5 levels were higher in the winter than in the summer. Moreover, PM2.5 and bioaerosol levels showed remarkable daily and diurnal variations, whereas a good correlation was found between the VOC levels measured in the morning and in the afternoon. Bacteria levels were, in general, higher than fungi levels. Among the VOCs, toluene was the most predominant, whereas elevated n-hexane levels were also observed in the kindergarten and the primary school, probably due to the frequent wet cleaning during school days. According to factor analysis, several factors were found to be significantly influencing the indoor air quality (IAQ), and amongst them, VOC-based products used indoors ranked first. The overall results indicate that grab sampling in naturally ventilated places may overestimate or underestimate the IAQ due to the inhomogeneous composition of indoor air caused by irregular exchanges with the outdoor air according to the season and/or occupants' habits.

Implications Seasonal and diurnal variations of VOCs, PM2.5, bioaerosols in house, office, and schools were observed, in which PM2.5 and bioaeorosols showed marked both intra- and interday variability, but VOCs did not. VOC-containing products were the most common source of air pollutants affecting the indoor air quality. External factors affecting the indoor air quality were season and indirectly ventilation. A grab sample cannot be representative in evaluating the air quality of a naturally ventilated environment precisely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号