首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   3篇
基础理论   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Surveys of juvenile hawksbills around Buck Island Reef National Monument, US Virgin Islands from 1994 to 1999 revealed distributional patterns and resulted in a total of 75 individual hawksbill captures from all years; turtles ranged from 23.2 to 77.7 cm curved carapace length (CCL; mean 42.1 ± 12.3 cm SD). Juveniles concentrated where Zoanthid cover was highest. Length of time between recaptures, or presumed minimum site residency, ranged from 59 to 1,396 days (mean 620.8 ± 402.4 days SD). Growth rates for 23 juveniles ranged from 0.0 to 9.5 cm year?1 (mean 4.1 ± 2.4 cm year?1SD). Annual mean growth rates were non-monotonic, with the largest mean growth rate occurring in the 30–39 cm CCL size class. Gastric lavages indicated that Zoanthids were the primary food source for hawksbills. These results contribute to our understanding of juvenile hawksbill ecology and serve as a baseline for future studies or inventories of hawksbills in the Caribbean.  相似文献   
2.
Water treatment residuals (WTR) are useful soil amendments to control excessive soluble phosphorus (P) in soils, but indiscriminate additions can result in inadequate control or excessive immobilization of soluble P, leading to crop deficiencies. We evaluated the influence of application rates of an Al-WTR and various P-sources on plant yields, tissue P concentrations, and P uptake and attempted to identify a basis for determining WTR application rates. Bahiagrass (paspalum notatum Fluggae) was grown in a P-deficient soil amended with four P-sources at two application levels (N- and P-based rates) and three WTR rates (0, 10, and 25 g kg(-1) oven dry basis) in a glasshouse pot experiment. The glasshouse results were compared with data from a 2-yr field experiment with similar treatments that were surface applied to an established bahiagrass. Soil P storage capacity (SPSC) values increased with application rate of WTR, and the increase varied with sources of P applied. Soil soluble P concentrations increased as SPSC was reduced, and a change point was identified at 0 mg kg(-1) SPSC in the glasshouse and the field studies. A change point was identified in the bahiagrass yields at a tissue P concentration of 2.0 g kg(-1), corresponding to zero SPSC. Zero SPSC was shown to be an agronomic threshold above which yields and P concentrations of plants declined and below which there is little or no yield response to increased plant P concentrations. Applying P-sources at N-based rates, along with WTR sufficient to give SPSC value of 0 mg kg(-1) SPSC, enhanced the environmental benefits (reduced P loss potential) without negative agronomic impacts.  相似文献   
3.
This work examines the effect of butanol (higher alcohol) on the emission pattern of neat neem oil biodiesel (NBD100) fueled diesel engine. Single-cylinder, 4-stroke, research diesel engine was employed to conduct the trial. Blends comprising the mixture of biodiesel and higher alcohol were prepared by employing an ultrasonic agitator. Four test fuels such as neat neem oil biodiesel, diesel, and two blends of higher alcohol/neem oil biodiesel: 10% and 20% (by volume). Experimental result showed that increasing alcohol content to biodiesel brought down the various emissions such as Smoke, NOx, HC, and CO by 6.8%, 10.4%, 8.6%, and 5.9%, respectively, at all loads. It was also concluded from the trail that a 20% higher alcohol/neem oil biodiesel blends show the promising signs in reducing all the emissions associated with biodiesel fuelled diesel engine.  相似文献   
4.
The objectives of this research were to evaluate nitrate N (NO3-N) leaching and turf response to nitrogen rate (NR) and irrigation regime (IR) in 'Floratam' St. Augustinegrass ( [Walt.] Kuntze.) and 'Empire' zoysiagrass ( Steud). The research was conducted in Citra, FL, from 2005 through 2007. Nitrogen (N) was applied at annual rates of 32, 64, 128, and 196 kg ha?1 in 2005, and at 49, 196, 343, or 490 kg ha?1 in 2006 and 2007. Irrigation treatments consisted of 1.3 cm applied twice weekly or 2.6 cm applied once weekly. In general, NO?-N leaching was greater from zoysiagrass. In 2007, annual NO?-N leached varied due to the interaction of NR, IR, and grass. There was little association between NR and increased NO?-N leaching in St. Augustinegrass in any year. While St. Augustinegrass had no differences in NO?-N leached within NR due to IR, there were some differences in NO?-N leached from zoysiagrass at some N levels, with greater NO?-N leached from the more frequent irrigation regime. Turf quality (TQ) was generally above an acceptable level in St. Augustinegrass at all but the lowest NRs and at all NRs in zoysiagrass with the exception of the spring fertilizer cycle (SFC) in 2007, when high NR treatments resulted in disease. Maintenance of a healthy turfgrass cover is an important strategy for reducing potential nutrient movement from fertilizer application. The current recommended rates for St. Augustinegrass provide good turf cover and health, and result in minimal NO?-N leaching. Zoysiagrass N rates may need to be revised downward to reduce disease, improve turf cover, and reduce NO?-N leaching.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号