首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   1篇
环保管理   1篇
综合类   1篇
基础理论   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Wild rodents were collected using live snap traps in pistachio gardens of Kerman Province, Southeast Iran from 2007 to 2009, then some physiological parameters of them were measured. The samples were identified as follow: Nesokia indica, Meriones persicus, Meriones lybicus and Tatera indica. Blood samples were obtained from the heart, then the blood parameters (glucose, cholesterol, triglyceride, total protein, HDL, red and white blood cell number) in wild species of rodents and laboratory rat were compared. The results showed that there were no significant differences in serum glucose, triglyceride, HDL and total protein levels among different experimental groups. The concentration of cholesterol in T. indica was more than that in N. indica (P < 0.01). The total numbers of red blood cells also showed significant difference between wild garden rodent species and laboratory rat (P < 0.01), while the numbers of white blood cells showed no significant difference.  相似文献   
2.
Photoperiod and dietary lipids both influence thermal physiology and the pattern of torpor of heterothermic mammals. The aim of the present study was to test the hypothesis that photoperiod-induced physiological changes are linked to differences in tissue fatty acid composition of deer mice, Peromyscus maniculatus (∼18-g body mass). Deer mice were acclimated for >8 weeks to one of three photoperiods (LD, light/dark): LD 8:16 (short photoperiod), LD 12:12 (equinox photoperiod), and LD 16:8 (long photoperiod). Deer mice under short and equinox photoperiods showed a greater occurrence of torpor than those under long photoperiods (71, 70, and 14%, respectively). The duration of torpor bouts was longest in deer mice under short photoperiod (9.3 ± 2.6 h), intermediate under equinox photoperiod (5.1 ± 0.3 h), and shortest under long photoperiod (3.7 ± 0.6 h). Physiological differences in torpor use were associated with significant alterations of fatty acid composition in ∼50% of the major fatty acids from leg muscle total lipids, whereas white adipose tissue fatty acid composition showed fewer changes. Our results provide the first evidence that physiological changes due to photoperiod exposure do result in changes in lipid composition in the muscle tissue of deer mice and suggest that these may play a role in survival of low body temperature and metabolic rate during torpor, thus, enhancing favourable energy balance over the course of the winter.  相似文献   
3.
A new use for biofilm barriers was developed and successfully applied to treat nitrate‐contaminated groundwater down to drinking water standards. The barrier was created by stimulating indigenous bacteria with injections of molasses as the carbon donor and a combination of yeast extract and trimetaphosphate as nutrients. This injection of amendments results in bacterial growth in the aquifer, which attaches to the sand grains to create a reactive semipermeable biofilm. The biofilm barrier presented in this article reduced the migration of contaminants and provided an active zone for remediation. The cylindrical biobarrier was constructed using eight wells on the perimeter forming a 60‐foot‐diameter reactive biodenitrification region. Another well at the center was installed to continuously extract the treated water. The intent was to produce a continuous source of nitrate‐free water. The system operated for over one year, and during this period, the biobarrier was revived multiple times by reinjecting molasses in the perimeter wells. Nitrate concentrations of treated water decreased from 275 mg/L (as nitrogen) to < 1 mg/L. © 2005 Wiley Periodicals, Inc.  相似文献   
4.
The temperate sea anemone Anthopleura elegantissima is facultatively symbiotic with unicellular algae. Symbiotic A. elegantissima can supplement heterotrophic feeding with excess photosynthate from their algal partners, while asymbiotic individuals must rely solely on heterotrophy. A. elegantissima individuals were collected from Swirl Rocks, Washington (48°25′6″ N, 122°50′58″ W) in July 2010, and prey capture and feeding characteristics were measured to determine whether asymbiotic individuals are more efficient predators. Feeding abilities were then measured again after a 3-week exposure to full sunlight or shaded conditions. Freshly collected asymbiotic anemones had larger nematocysts, but symbiotic individuals showed greater nematocyte sensitivity. Sunlight enhanced digestion and reduced cnida density in all anemones regardless of symbiotic state. Results suggest that the phototropic potential of A. elegantissima, as influenced by symbiotic condition, has little effect on heterotrophic capacity. The anemones appear to maximize heterotrophic energy input independent of the presence or identity of their algal symbionts.  相似文献   
5.
In order to develop subsurface CO2 storage as a viable engineered mechanism to reduce the emission of CO2 into the atmosphere, any potential leakage of injected supercritical CO2 (SC-CO2) from the deep subsurface to the atmosphere must be reduced. Here, we investigate the utility of biofilms, which are microorganism assemblages firmly attached to a surface, as a means of reducing the permeability of deep subsurface porous geological matrices under high pressure and in the presence of SC-CO2, using a unique high pressure (8.9 MPa), moderate temperature (32 °C) flow reactor containing 40 millidarcy Berea sandstone cores. The flow reactor containing the sandstone core was inoculated with the biofilm forming organism Shewanella fridgidimarina. Electron microscopy of the rock core revealed substantial biofilm growth and accumulation under high-pressure conditions in the rock pore space which caused >95% reduction in core permeability. Permeability increased only slightly in response to SC-CO2 challenges of up to 71 h and starvation for up to 363 h in length. Viable population assays of microorganisms in the effluent indicated survival of the cells following SC-CO2 challenges and starvation, although S. fridgidimarina was succeeded by Bacillus mojavensis and Citrobacter sp. which were native in the core. These observations suggest that engineered biofilm barriers may be used to enhance the geologic sequestration of atmospheric CO2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号