首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   9篇
  综合类   11篇
  2017年   1篇
  2015年   3篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
三峡库区(重庆段)是典型的河道型水库生态脆弱带,生态系统本底条件较差.明确库区生态系统健康状况及其胁迫因子,对促进库区可持续发展、维护三峡库区生态安全具有重要的现实意义.针对三峡库区(重庆段)目前的生态系统特点,构建了自然-社会-经济复合生态系统健康状况评价指标体系,并在灰色系统理论基础上,将信息论中Jaynes最大信息熵原理引入到生态系统健康评价当中,对三峡库区(重庆段)复合生态系统健康进行了评价.结果表明,三峡库区(重庆段)生态系统正处于急剧变化的过渡阶段,生态系统的生产、调节和服务功能分异明显.三峡库区(重庆段)生态系统东段的健康程度总体上好于西段,但东段内部空间分异明显,结构复杂.针对三峡库区(重庆段)现存的生态环境问题,提出了相应的调控措施和途径.  相似文献
2.
哈大齐工业走廊污染防治工作的思考   总被引:3,自引:0,他引:3  
哈大齐(哈尔滨、大庆、齐齐哈尔)工业走廊将成为黑龙江省工业集中快速发展的工业带,该区域地处松嫩平原的腹地,其环境特点是环境空气容量大,水资源贫乏,排水困难,草原生态环境脆弱.湿地保护区面积大.在污染防治方面要大力推行循环经济,注意生态保护.  相似文献
3.
高浓度游离氨冲击负荷对生物硝化的影响机制   总被引:2,自引:2,他引:0       下载免费PDF全文
季民  刘灵婕  翟洪艳  刘京  苏晓 《环境科学》2017,38(1):260-268
工业废水厂或含工业废水较多的城市污水处理厂,在运行过程中可能会意外受到高浓度氨氮废水急性冲击负荷的影响,造成生物硝化反应受到抑制,出水不能稳定达标.为了指导实际污水处理厂应对游离氨(FA)急性冲击负荷造成的出水不达标问题,本文探究高浓度氨氮废水对污水生物硝化系统的影响机制.本文利用序批式活性污泥反应器(SBR)处理模拟高氨氮废水,通过监测氨氮最大比降解速率、硝酸盐氮最大比生成速率、亚硝化和硝化比耗氧速率,硝化菌丰度等指标,研究高浓度氨氮废水中FA对硝化菌活性的影响规律.结果表明,FA在低浓度范围内,增加FA急性负荷能够促进硝化活性,而当FA急性冲击负荷大于一定值时,会对硝化作用造成抑制;FA浓度越大,受到抑制的硝化生物活性所需要的恢复周期越长.利用荧光原位杂交分析技术,发现当进水FA浓度(以N计)从3.6 mg·L-1升高到8.1 mg·L-1时,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)菌群数量都略微升高,而当FA浓度大于8.1 mg·L-1时,AOB和NOB菌群数量明显下降.FA对AOB和NOB菌群的临界抑制浓度分别为8.1 mg·L-1和6.6 mg·L-1,NOB相对于AOB菌群更敏感.  相似文献
4.
Lake eutrophication (LE) has become an increasingly severe environmental problem recently. However, there has been no nutrient standard established for LE control in many developing countries such as China. This study proposes a structural equation model to assist in the establishment of a lake nutrient standard for drinking water sources in Yunnan-Guizhou Plateau Ecoregion (Yungui Ecoregion), China. The modeling results indicate that the most predictive indicator for designated use-attainment is total phosphorus (TP) (total effect =-0.43), and chlorophyll a (Chl-a) is recommended as the second important indicator (total effect =-0.41). The model is further used for estimating the probability of use-attainment associated with lake water as a drinking water source and various levels of candidate criteria (based on the reference conditions and the current environmental quality standards for surface water). It is found that these candidate criteria cannot satisfy the designated 100% use-attainment. To achieve the short-term target (85% attainment of the designated use), TP and Chl-a values ought to be less than 0.02 mg/L and 1.4 μg/L, respectively. When used as a long-term target (90% or greater attainment of the designated use), the TP and Chl-a values are suggested to be less than 0.018 mg/L and 1 μg/L, respectively.  相似文献
5.
In order to identify the effect of geographic characteristics on the variations of nutrient concentrations and the utilization efficiency of nutrients by phytoplankton, data from 143 lakes, from 2008 to 2010, including three very different types of topography, i.e., the first topography ladder (FTL), second topography ladder (STL), and third topography ladder (TTL), were statistically analyzed. Lakes in the FTL and STL, located at high elevation (above 1000 m) and low longitudes (lower than 105° E), were sporadically oligotrophic, whereas lakes in the TTL were almost all mesotrophic and eutrophic. The trophic level index (TLI) became higher with the rise of longitude. Two turning points (5 and 15℃) on the curve of TLI as function of the average annual temperature (AAT) corresponded with theAAT in different lake regions in the STL and TTL. Because the responses of TLI toAAT differ significantly, there were variations of nutrient and algal biomass concentrations in different lake regions in the same type of topography ladder. According to the differences in utilization efficiency of total nitrogen or total phosphorus by phytoplankton, China could be partitioned into six lake regions. Scientific nutrient criteria for each lake region shall be established considering these differences in China.  相似文献
6.
The great spatial and temporal variability in hydrological conditions and nitrogen (N) processing introduces large uncertainties to the identification of N sources and quantifying N cycles in plain river network regions. By combining isotopic data with chemical and hydrologic measurements, we determined the relative importance of N sources and biogeochemical N processes in the Taige River in the East Plain Region of China. The river was polluted more seriously by anthropogenic inputs in winter than in summer. Manure and urban sewage effluent were the main nitrate (NO3-) sources, with the nitrification of N-containing organic materials serving as another important source of NO3-. In the downstream, with minor variations in hydrological conditions, nitrification played a more important role than assimilation for the decreasing ammonium (NH4+-N) concentrations. The N isotopic enrichment factors (ε) during NH4 + utilization ranged from -13.88‰in March to -29.00‰in July. The ratio of the increase in δ18O and δ15N of river NO3- in the downstream was 1.04 in January and 0.92 in March. This ratio indicated that NO3- assimilation by phytoplankton was responsible for the increasing δ15N and δ18O values of NO3- in winter. The relationships between δ15N of particulate organic nitrogen and isotopic compositions of dissolved inorganic nitrogen indicated that the phytoplankton in the Taige River probably utilized NH4+ preferentially and mainly in summer, while in winter, NO3- assimilation by phytoplankton was dominant.  相似文献
7.
Establishing the nutrient reference condition(baseline environmental condition) of lakes in an ecoregion is a critical consideration in the development of scientifically defensible aquatic nutrient criteria.Three methods were applied to determine reference conditions in the Eastern plain ecoregion lakes with respect to total phosphorus(TP),total nitrogen(TN),planktonic chlorophyll a(Chl-a) and Secchi depth(SD).The reference condition value for the lakes in the Eastern plain ecoregion by the trisection method is TP of 0.029 mg/L,TN of 0.67 mg/L,Chl-a of 3.92 mg/m 3,SD of 0.85 m,and the reference condition range by the lake population distribution approach is TP of 0.014-0.043 mg/L,TN of 0.360-0.785 mg/L,Chl-a of 1.78-4.73 mg/m 3,SD of 0.68-1.21 m.Additionally,empirical models were developed for estimating the reference Chl-a concentration and SD successfully for lakes in the Eastern plain ecoregion.Overall,the data suggest that multiple methods can be used to determine reference conditions and that in Eastern plain ecoregion lakes the reference condition corresponds to a mesotrophic status.  相似文献
8.
The trophic status assessment of lakes in different lake regions may provide important and fundamental information for lake trophic state classification and eutrophication control. In this study, a region-specific lake eutrophication assessment standard was established through a frequency distribution method based on chlorophyll-a concentration. The assessment standards under the oligotrophic state for lakes in the Eastern plain, Yungui Plateau, Northeast Plain and Mountain Mongolia-Xinjiang regions are total phosphorus of 0.068, 0.005, 0.011, 0.005 mg/L; total nitrogen of 1.00, 0.16, 0.37, 0.60 mg/L; Secchi depth of 0.60, 8.00, 1.55, 3.00 m; and CODMn of 2.24, 1.00, 5.1 l, 4.00 mg/L, respectively. Moreover, a region-specific comprehensive trophic level index was developed to provide an understandable assessment method for the public. The results indicated that the frequency distribution analysis based on chlorophyll-a combined with trophic level index provided a useful metric for the assessment of the lake trophic status. In addition, the difference of eutrophication assessment standards in different lake regions was analyzed, which suggested that the sensitivities of algae to nutrients and the assessment standard of trophic status possessed significant regional differences for the four lake ecoregions. Lake eutrophication assessment standards would contribute to maximizing the effectiveness of future management strategies, to control and minimize lake eutrophication problems.  相似文献
9.
Phosphorus is an important limiting nutrient in many ecosystems. Consequently, there is increasing interest on phosphate uptake and algal growth due to the increasing frequency and magnitude of algal blooms induced by eutrophication. The co-existence of surface adsorbed and intracellular phosphorus pools indicate that phosphate uptake by phytoplankton is, to some extent, a two-stage kinetic process. However, almost all previous uptake models considered the internal uptake stage only and ignored the possible impact of surface adsoption. In this article, a two-stage kinetic uptake model considering both surface adsorption and P-stress on phosphate uptake by algae was constructed and compared to conventional one-stage models, based on experimental data on short-term uptake kinetics of a green algae S. quadricauda. Results indicated that with suitable parameters, the two-stage uptake model not only fit the experimental data better, but also gave more reasonable and realistic explanations to the phosphate uptake process. The results are meaningful as surface-adsorption of phosphate may a ect the uptake process of phosphate and assist in understanding realistic phosphate uptake kinetics in phytoplankton.  相似文献
10.
温室气体的大量排放所造成温室效应的加剧是全球变暖的基本原因。全球和区域碳循环已成为全球气候变化研究的重要内容之一。碳汇的巨大功能深受世人瞩目,影响碳汇增加因素的研究也越加必要。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号