首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
评价与监测   1篇
  1997年   2篇
排序方式: 共有2条查询结果,搜索用时 187 毫秒
1
1.
We report results from the application of an integrated assessment model, MiniCAM 1.0. The model is employed to explore the full range of climate change implications of the successful development of cost effective, advanced, energy technologies. These technologies are shown to have a profound effect on the future magnitude and rate of anthropogenic climate change. We find that the introduction of assumptions developed by a group of ‘bottom-up’ modelers for the LEESS scenarios into a ‘top-down’ model, the Edmonds-Reilly-Barns Model, leads to ‘top down’ emissions trajectories similar to those of the LEESS. The cumulative effect of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv. While all energy technologies play roles, the introduction of advanced biomass energy production technology is particularly important. The consideration of all greenhouse related anthropogenic emissions, and in particular sulfur dioxide, is found to be important. We find that the consideration of sulfur dioxide emissions coupled to rapid reductions in carbon dioxide emissions leads to higher global mean temperatures prior to 2050 than in the reference case. This result is due to the short-term cooling impact of sulfate aerosols, which dominates the long-term warming impact of CO2 and CH4 in the years prior to 2050. We also show that damage calculations which use only mean global temperature and income may be underestimating damages by up to a factor of five. Disaggregating income reduces this to a factor of two, still a major error. Finally, the role of the discount rate is shown to be extraordinarily important to technology preference.  相似文献   
2.
With the adoption of the Berlin Mandate, developed countries are being asked to set emission limits for the early decades of the next century. The size of the reductions is currently the subject of international negotiations. This paper is intended to contribute to the analysis and assessment phase leading up to the adoption of new targets and timetables. However, we take a somewhat different approach than that suggested by the Berlin Mandate. Rather than focus exclusively on the next steps by developed countries, we view the issue from the perspective of the Convention's ultimate objective, the stabilization of atmospheric concentrations. We examine what might constitute costeffective strategies for limiting CO2 concentrations to alternative levels. We then explore the implications for nearterm mitigation decisions and for longterm participation by the developing countries.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号