首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   6篇
基础理论   2篇
污染及防治   6篇
评价与监测   2篇
社会与环境   2篇
  2021年   1篇
  2018年   4篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   3篇
  2007年   2篇
  2004年   3篇
  2000年   1篇
排序方式: 共有21条查询结果,搜索用时 312 毫秒
1.
Fresh water is one of the most important resources required for human existence, and ensuring its stable supply is a critical issue for sustainable development. The effects of a general set of agriculture and water management adaptations on the size of the world’s water-stressed population were assessed for a specific but consistent scenario on socio-economic development and climate change during the 21st century. To maintain consistency with agricultural land use change, we developed a grid-based water supply–demand model integrated with an agro-land use model and evaluated the water-stressed population using a water withdrawals-to-availability ratio for river basins. Our evaluation shows that, if no adaptation options are implemented, the world’s water-stressed population will increase from 1.8 billion in 2000 to about 3.3 billion in 2050, and then remain fairly constant. The population and economic growth rather than climate change will be dominant factors of this increase. Significant increase in the water-stressed population will occur in regions such as North Africa and the Middle East, India, Other South Asia, China and Southeast Asia. The key adaptation options differ by region, depending on dominant crops, increase in crop demand and so on. For instance, ‘improvement of irrigation efficiency’ and ‘enhancement of reclamation water’ seem to be one of important options to reduce the water stress in Southeast Asia, and North Africa and the Middle East, respectively. The worldwide implementation of adaptation options could decrease the water-stressed population by about 5 % and 7–17 %, relative to the scenario without adaptations, in 2050 and 2100, respectively.  相似文献   
2.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   
3.
Considering the projected population growth in the twenty-first century, some studies have indicated that global warming may have negative impacts on the risk of hunger. These conclusions were derived based on assumptions related to social and technological scenarios that involve substantial and influential uncertainties. In this paper, focusing on agrotechnology and food access disparity, we analyzed food availability and risk of hunger under the combined scenarios of food demands and agroproductivity with and without climate change by 2100 for the B2 scenario in the Special Report on Emissions Scenarios. The results of this study suggest that (1) future food demand can be satisfied globally under all assumed combined scenarios, and (2) a reduction of food access disparity and increased progress in productivity are just as important as climate change mitigation for reducing the risk of hunger.  相似文献   
4.
Many of the numerous difficult issues facing the world today involve relationships entailing trade‐offs and synergies. This study quantitatively assesses some alternative scenarios using integrated assessment models, and provides several indicators relating to sustainable development and climate change, such as indicators of income (per capita GDP), poverty, water stress, food access, sustainable energy use, energy security, and ocean acidification, with high consistencies among the indicators within a scenario. According to the analyses, economic growth helps improve many of the indicators for sustainable development. On the other hand, climate change will induce some severe impacts such as ocean acidification under a non‐climate intervention scenario (baseline scenario). Deep emission reductions, such as to 2°C above the pre‐industrial level, could cause some sustainable development indicators to worsen. There are complex trade‐offs between climate change mitigation levels and several sustainable development indicators. A delicately balanced approach to economic growth will be necessary for sustainable development and responses to climate change.  相似文献   
5.
Sacoglossans use chloroplasts taken from algal food for photosynthesis (kleptoplasty), but the adaptive significance of this phenomenon remains unclear. Two con-generic sacoglossans (Elysia trisinuata and E. atroviridis) were collected in 2009–2011 from Shirahama (33.69°N, 135.34°E) and Mukaishima (34.37°N, 133.22°E), Japan, respectively. They were individually maintained for 16 days under four experimental conditions (combination of light/dark and with/without food), and their survival rate and relative (=final/initial) weights were measured. Both light and food had positive effects on the survival in E. trisinuata, whereas no positive effects of light or food on survival were detected in E. atroviridis. Both light and food had positive effects on relative weights in both species, but light had smaller effects than food. A significant interaction term between light and food was detected in E. trisinuata (but not in E. atroviridis) in that only the presence of both resulted in weight gains. This result suggests that E. trisinuata can obtain sufficient additional energy from photosynthesis for sustaining growth when fresh chloroplasts are continuously supplied from algal food. In addition, fluorescence yield measurements showed that unfed individuals of both E. trisinuata and E. atroviridis lost photosynthetic activity soon (<4 and 4–8 days, respectively). In conclusion, photosynthesis may function to obtain supplementary nutrition for sustaining growth when food is available in sacoglossans with short-term functional kleptoplasty.  相似文献   
6.
Ammonia, nitrous oxide, and methane emission from animal farming of South, Southeast, and East Asia, in 2000, was estimated at about 4.7 Tg NH3–N, 0.51 Tg N2O–N, and 29.9 Tg CH4, respectively, using the FAO database and countries’ statistic databases as activity data, and emission factors taking account of regional characteristics. Most of these atmospheric components, up to 60–80%, were produced in China and India. Pakistan, Bangladesh, and Indonesia, which were large source countries next to China and India, contributed more than a few percent of total emission of each atmospheric component. The largest emission livestock were cattle whose contribution was considerably high in South, Southeast, and East Asia; more than one-fourth of ammonia and nitrous oxide emissions: more than half of methane emission. The other major livestock for nitrous oxide and ammonia emissions were pigs. For methane emission, buffaloes were second source livestock. To provide spatial distributions of these gases, the emissions of county and district level were allocated into each 0.5° grid by means of the weighting by high-resolution land cover datasets. The regions with considerable high emissions of all components were able to be found at the Ganges delta and the Yellow River basin. The spatial distributions for ammonia and nitrous oxide emissions were similar but had a substantial difference from methane distribution.  相似文献   
7.
The HO2 uptake to aerosol particles is potentially significant sink for the HO2 radical in the marine atmosphere. To assess the heterogeneous loss of HO2 on marine aerosol particles, we have investigated the uptake coefficients (γ) of HO2 for submicron aerosol particles of KCl, synthetic sea salt, and natural seawater under ambient conditions (760 Torr and 296 ± 2 K) using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. γ values determined for dry and wet aerosols of KCl were 0.02 ± 0.01 and 0.07 ± 0.03 at 66% and 75% RH, respectively, while γ values for those doped with CuSO4 was 0.55 ± 0.19 at 75% RH. γ values determined for synthetic sea-salt particles were 0.07 ± 0.03, 0.12 ± 0.04 and 0.13 ± 0.04 at 35%, 50%, 75% RH, respectively, while γ values for natural seawater particles were 0.10 ± 0.03, 0.11 ± 0.02 and 0.10 ± 0.03 at 35%, 50%, 75% RH, respectively. We recommend a HO2 uptake coefficient in marine areas of 0.1 for modeling and estimated the contribution of heterogeneous loss of HO2 by sea-salt aerosol particles in marine areas using a box model. Our box-model simulations suggested that daytime maximum HO2 concentrations decreased to 87–94% of the values without heterogeneous loss.  相似文献   
8.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   
9.
An international exercise to directly assess consistency of standards for ground-level ozone in East Asia was conducted as part of the East Asian Regional Experiment 2005 (EAREX 2005) in the framework of the Atmospheric Brown Clouds (ABC) project. Ten organizations collaboratively participated in the intercomparison. Four groups representing Japan, Korea, Hong Kong, and Taiwan made comparisons at the Gosan super observatory, Jeju Island, Korea, in March 2005, with ozone instruments calibrated to their national standards, and four Japanese groups made off-site comparisons with laboratory-level standards. All comparisons generally indicated good agreement with the standard reference photometer (SRP) 35, built by the National Institute of Standards and Technology (USA) and maintained by the National Institute for Environmental Studies (Japan). The assessment was expanded to measurement networks contributing to the World Meteorological Organization's Global Atmospheric Watch (WMO/GAW) program as part of off-site comparisons, and excellent agreement was achieved. These efforts contribute to propagating traceability of the national metrology standards among the atmospheric science community, to ensuring comparability of the existing ozone measurements, and to establishing an integrated network of air quality monitoring in Asia.  相似文献   
10.
Climate change and energy service demand exert influence on each other through temperature change and greenhouse gas emissions. We have consistently evaluated global residential thermal demand and energy consumption up to the year 2050 under different climate change scenarios. We first constructed energy service demand intensity (energy service demand per household) functions for each of three services (space heating, space cooling, and water heating). The space heating and cooling demand in 2050 in the world as a whole become 2.1–2.3 and 3.8–4.5 times higher than the figures for 2010, whose ranges are originated from different global warming scenarios. Cost-effective residential energy consumption to satisfy service demand until 2050 was analyzed keeping consistency among different socio-economic conditions, ambient temperature, and carbon dioxide (CO2) emission pathways using a global energy assessment model. Building shell improvement and fuel fuel-type transition reduce global final energy consumption for residential thermal heating by 30% in 2050 for a 2 °C target scenario. This study demonstrates that climate change affects residential space heating and cooling demand by regions, and their desirable strategies for cost-effective energy consumption depend on the global perspectives on CO2 emission reduction. Building shell improvement and energy efficiency improvement and fuel fuel-type transition of end-use technologies are considered to be robust measures for residential thermal demand under uncertain future CO2 emission pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号