首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
基础理论   4篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1997年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Effects of New Forestry Practices on Rare Epiphytic Macrolichens   总被引:5,自引:0,他引:5  
Abstract:  The preservation of key habitats is included in modern forest-management practices as one of the main means to preserve biodiversity in northern European production forests. I examined the distribution patterns and persistence of occurrence of rare epiphytic macrolichens in a predominantly unprotected forest landscape with an area of 278 km2 in southern Finland. Occurrence data of macrolichens in two key habitats, rock outcrops and mires, were compared with data from production forests. The density of populations of rare macrolichens was 50-fold higher on rock outcrops and 25-fold higher on mires than in production forests. Most rare species of epiphytic macrolichens were found only in key habitats. In modern, intensively managed forest landscapes, rock outcrops appeared to represent the main habitats for rare macrolichens as a result of the long-term continuity of old trees. Most macrolichen occurrences represented very small populations with a high extinction risk. Of the populations found in 1989–1995 in key habitats, 51% had disappeared, by 2000–2001, mainly as a result of forestry activities. The disappearance of populations significantly exceeded the rate of establishment of new populations. My results emphasize the importance of key habitats for declining forest species. There is also a need to improve and sharpen the guidelines for delimiting and managing key habitats in order to halt the continued decline of epiphytic macrolichens.  相似文献   
2.
Abstract:  In transient environments, where local extinctions occur as a result of destruction or deterioration of the local habitat, the long-term persistence of a species requires successful colonizations at new, suitable sites. This kind of habitat tracking should be associated with the asynchronous dynamics of local populations, and it can be especially important for the conservation of rare plant species in riparian habitats. We determined spatiotemporal variation in the demography of the perennial Silene tatarica (L.) Pers. in 15 populations (1998–2003) located in periodically disturbed riparian habitats. The habitats differed according to their morphology (flat shores, slopes) and the amount of bare ground (open, intermediate, closed) along a successional gradient. We used elasticity and life-table response analyses and stochastic simulations to study the variation in population demography. Finite population growth rate was higher in intermediate habitats than in open and closed habitats. In stochastic simulations population size increased in most cases, but four populations were projected to become extinct within 12–70 years. The viability of local populations depended most on the survival and growth of juvenile individuals and on the fecundity of large fertile individuals. On a regional scale, the persistence of this species will require a viable network of local populations as protection against local extinctions caused by natural disturbances and succession. Accordingly, the long-term persistence of riparian species may depend on habitat changes; thus, their conservation requires maintenance of natural disturbance dynamics. Along regulated rivers, management activities such as the creation of open habitats for new colonization should be implemented. Similarly, these activities can be rather general requirements for the conservation of endangered species dependent on transient habitats along successional gradients.  相似文献   
3.
Short‐term surveys are useful in conservation of species if they can be used to reliably predict the long‐term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short‐term demographic data (1999–2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999–2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers. Precisión de Datos Demográficos de Corto Plazo en la Proyección del Destino de Poblaciones a Largo Plazo  相似文献   
4.
5.
/ The main objectives of this study were to identify the regions inFennoscandia where the critical loads of sulfur (S) and acidifying nitrogen(N) for lakes are exceeded and to investigate the consequences for depositionreductions, with special emphasis on the possible trade-offs between S and Ndeposition in order to achieve nonexceedance. In the steady-state model forcalculating critical loads and their exceedances, all relevant processesacting assinks for N and S are considered. The critical loads of N and S areinterrelated (defining the so-called critical load function), and therefore asingle critical load for one pollutant cannot be defined without makingassumptions about the other. Comparing the present N and S deposition withthe critical load function for each lake allows determination of thepercentage of lakes in the different regions of Fennoscandia where: (1) Sreductions alone can achieve nonexceedance, (2) N reductions alone aresufficient, and (3) both N and S reductions are required but to a certaindegree interchangeable. Secondly, deposition reduction requirements wereassessed by fixing the N deposition to the present level, in this wayanalyzing the reductions required for S, and by computing the percentage oflakes exceeded in Finland, Norway and Sweden for every possible percentdeposition reduction in S and N, in this way showing the (relative)effectiveness of reducing S and/or N deposition. The results showed clearregional patterns in the S and N reduction requirements. In practically thewhole of Finland and the northern parts of Scandinavia man-made acidificationof surface waters could be avoided by reducing S deposition alone. In thesouthern parts of Sweden some reductions in N deposition are clearly neededin addition to those for S. In southern Norway strong reductions are requiredfor both N and S deposition.KEY WORDS: Acidification; Critical load; Exceedance; Sulfur; Nitrogen;Deposition; Lake  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号