首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
综合类   3篇
污染及防治   3篇
  2020年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
磷酸铵镁热解循环技术可以有效降低磷酸铵镁结晶技术的药剂费用。同时,在磷酸铵镁热解过程中添加Mg(OH)2碱促媒介,能阻止磷酸氢镁向焦磷酸镁的转化,并降低热解产物氨氮去除过程中上清液磷酸盐的残留。在Mg(OH)2∶NH+4摩尔比为1∶1,热解温度为110℃条件下,热解产物沉氨效率接近84%,上清液磷酸盐残留量为0.02 mg/L。  相似文献   
2.
环境条件变化对河流沉积物“三氮”释放的影响   总被引:1,自引:0,他引:1  
以京杭运河某断面沉积物和上覆水为研究对象,利用室内模拟试验探讨了3种环境条件(温度,曝气复氧,pH值)变化对河道沉积物"三氮"释放的影响。结果表明:5℃时上覆水氨氮和硝态氮累积量高于25℃,25℃时上覆水亚硝态氮累积量高于5℃,冬季低温条件下沉积物氨氮和硝态氮释放对上覆水的影响不容忽视。曝气复氧能抑制沉积物氨氮的释放和加速硝化作用而消耗氨氮,并促进亚硝态氮和硝态氮的生成,但是复氧初期可能致使上覆水氨氮含量上升。pH值越低,上覆水氨氮累积量越大,1 d后pH 4条件下的底泥氨累积量为pH 10时的1.8倍,pH 7~8.5条件下上覆水亚硝态氮累积速度最快,硝态氮累积速率最低。  相似文献   
3.
药剂费用过高是阻碍磷酸铵镁结晶技术应用的难题之一,通过磷酸铵镁热解产物循环沉氨可降低药剂费用.但湿法热解会生成热稳定性更好的NH4MgPO4·H2O,从而增加了磷酸铵镁热解的能耗.采用干法热解时,由于不引入额外的水分子,可以降低磷酸铵镁的热解温度.同时,在磷酸铰镁热解过程中加入NaOH碱促试剂,可有效促进磷酸铵镁释放NH4+,提高热解产物的沉氨效率,但同时上清液磷酸盐残留量也随NaOH添加量和热解温度提高而增加.热解温度为110℃时,直接热解产物沉氨效率为84%,而NaOH碱促热解产物沉氨率达到87%(NaOH与NH4+物质的量比为1:1),但此时上清液磷酸盐残留质量浓度达到2.3 mg/L,略高于GB 8978-1996《国家污水综合排放标准》的1.0 mg/L,方便废水的后续处理.  相似文献   
4.
化学药剂费用过高以及磷酸盐元素的消耗和化学污泥的利用问题是阻碍磷酸铵镁结晶技术应用推广的难题之一,磷酸铵镁热解产物循环技术可解决上述难题.本文叙述了磷酸铵镁热解产物沉氨机理,磷酸铵镁热解影响因素以及热解产物沉氨过程中的影响因素及机理;并阐述了磷酸铵镁热解产物循环过程中带来的新的问题以及可能的解决方法.  相似文献   
5.
采用3套膜生物反应器(MBR)研究不同污泥龄下溶解性微生物产物(SMP)对膜污染的影响。结果表明,随着污泥龄的延长,上清液中SMP的质量浓度逐渐降低,SMP中多糖和蛋白质含量与总SMP的变化趋势相同,也逐渐降低。高分子组分及疏水性有机组分占总SMP比例逐渐升高。而膜污染层中SMP的变化与上清液中SMP存在差异性。通过对上清液及膜污染层中SMP与膜污染速率进行相关性分析,结果表明上清液中SMP含量及性质与膜污染速率相关性不显著,而膜污染层中SMP质量浓度、多糖、高分子组分以及疏水性酸性组分对膜污染有显著影响。  相似文献   
6.
为考察高分子纳米微球对微污染物镉的吸附性能,以高分子空心微球为吸附剂,以废水镉微污染物为吸附对象,探讨高分子空心微球的重金属吸附性能,重点考察水热时间和水热温度对高分子微球表面基团的影响。结果表明:水热温度升高,高分子微球出现粘连;当水热温度为180℃,水热时间为4 h时,镉微污染物去除率最佳。强酸性条件有利于高分子微球吸附镉微污染物,当pH4时,镉微污染物去除率超过95%;而中碱性条件的去除率不超过70%。高分子空心微球镉离子吸附过程不属于放热过程,最大吸附量超过75 mg·g~(-1)。经盐酸再生利用时,高分子空心微球的镉吸附率没有出现下降,超过95%以上。高分子微球对微污染物镉具有良好的吸附性能。  相似文献   
7.
城市内河沉积物硝态氮释放行为的模拟研究   总被引:1,自引:0,他引:1  
余荣台 《环境工程学报》2014,8(7):2870-2874
沉积物营养盐的释放已引起相关学者的极大兴趣,对沉积物中硝态氮的释放行为研究还鲜有关注。通过室内模拟研究,考察不同pH、温度、扰动、曝气和光照条件下硝态氮的释放行为。研究结果表明,中性条件下,沉积物硝态氮释放速率最快;温度对硝态氮的释放起着明显的促进作用,随着温度的增加,硝化菌活性增强,硝态氮释放速率明显加快。同时,扰动、曝气和光照对硝态氮的释放也起着一定的促进作用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号