首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   4篇
  2021年   1篇
  2014年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 343 毫秒
1
1.
The Seine Estuary is well known to be widely contaminated by organic pollutants and especially by polycyclic aromatic hydrocarbons (PAHs). Fish are known to metabolize PAHs, leading to different toxic effects at both cellular and sub-cellular levels. In this work, we studied the relationships between the 7-ethoxyresorufin-O-deethylase (EROD) activity in the liver, the level of DNA strand breaks in blood cells and the concentration of PAH metabolites in the bile of the sentinel flatfish species Limanda limanda. Muscle and liver samples were analysed for parent PAH levels. Female and male dabs of two size classes (juveniles and adults) were collected by trawling in two sites with different degrees of pollution during March and September 2005 and 2006. Significant effects of sex, age, site and season were demonstrated on EROD activity and the level of strand breaks. Parent PAH concentrations in dabs did not allow discriminating of the two sampling sites. However, for PAH metabolites, significant differences were observed with sites and seasons. Dabs collected at the mouth of the estuary appeared to be the most impacted when looking at the results obtained with the three selected markers. The significant correlations observed between the level of PAH metabolites and the level of DNA lesions showed the importance of a combined analysis of chemical and biochemical markers to correctly assess the contribution of chemical contamination to the toxic effects measured in situ in fish.  相似文献   
2.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be present at high levels as mixtures in polluted aquatic environments. Many PAHs are potent mutagens and several are well-known carcinogens. Despite numerous studies on individual compounds, little is known about the toxicity of PAHs mixtures that are encountered in environmental situations. In the present work, zebrafish were continuously fed from 5 days post-fertilisation to 14 months post-fertilisation (mpf) with a diet spiked with fractions of either pyrolytic (PY), petrogenic light oil (LO), or petrogenic heavy oil (HO) origin at three concentrations. A decrease in survival was identified after 3 mpf in fish fed with the highest concentration of HO or LO, but not for PY. All PAH fractions caused preneoplastic and neoplastic disorders in long-term-exposed animals. Target tissues were almost exclusively of epithelial origin, with the bile duct epithelium being the most susceptible to chronic exposure to all PAH fractions, and with germ cells being the second most responsive cells. Significantly higher incidences of neoplasms were observed with increasing PAH concentration and exposure duration. The most severe carcinogenic effects were induced by dietary exposure to HO compared to exposure to LO or PY (45, 30 and 7 %, respectively, after 9 to 10 months of exposure to an intermediate concentration of PAHs). In contrast, earliest carcinogenic effects were detected as soon as 3 mpf after exposure to LO, including the lowest concentration, or to PY. PAH bioactivation and genotoxicity in blood was assessed by ethoxyresorufin-O-deethylase activity quantification and comet and micronuclei assays, respectively, but none of these were positive. Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenotoxic events that impair survival and physiology of exposed fish.  相似文献   
3.
In this study, laboratory experiments were carried out in order to come to a better understanding of the fate of polycyclic aromatic hydrocarbons (PAHs) in the marine environment and especially on their bioaccumulation, biotransformation and genotoxic effects in fish. Juveniles of turbot (Scophthalmus maximus) were exposed to PAHs through different routes via (1) a mixture of dissolved PAHs, (2) a PAH-polluted sediment and (3) an oil fuel elutriate. Fish were exposed 4 days followed by a 6-day depuration period. In each experiment, PAH concentrations in the seawater of the tanks were analysed regularly by gas chromatography coupled with mass spectrometry. Muscle and liver samples were also analysed for parent PAH levels and PAH bioconcentration factors were calculated. Biotransformation was evaluated by measuring the levels of PAH metabolites in fish bile. Genotoxicity was assessed by the alkaline comet assay. Regardless of exposure route, the parent PAH concentrations in the liver and muscle showed a peak level 1 day after the beginning of the exposure, followed by a decrease up to the background level towards the end of the experiment, except for the exposure to dissolved PAHs for which levels were relatively low throughout the study. As a consequence, no bioaccumulation was observed in fish tissues at the end of the experiment. In contrast, regardless of exposure routes, a rapid production of biliary metabolites was observed throughout the whole exposure experiment. This was especially true for 1-hydroxypyrene, the major metabolite of pyrene. After 6 days of recovery in clean water, a significant decrease in the total metabolite concentrations occurred in bile. Fish exposed through either route displayed a significant increase in DNA strand breaks after 4 days of exposure, and significant correlations were observed between the level of biliary PAH metabolites and the level of DNA lesions in fish erythrocytes. Overall results indicate that exposure to either a mixture of dissolved PAHs, a PAH-contaminated sediment or a dispersed oil fuel elutriate leads to biotransformation and increase in DNA damage in fish. The quantification of PAH metabolites in bile and DNA damage in erythrocytes appear to be suitable for environmental monitoring of marine pollution either in the case of accidental oil spills or sediment contamination.  相似文献   
4.
Environmental Science and Pollution Research - Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号