首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   3篇
环保管理   1篇
综合类   4篇
基础理论   1篇
污染及防治   1篇
评价与监测   1篇
社会与环境   3篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有11条查询结果,搜索用时 375 毫秒
1.
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1(V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy(FT-IR), thermogravimetry and differential thermal analysis(TG/DTA)and scanning electron microscopy(SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis(DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks.CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both Li P and Mn P activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16 S r DNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting.  相似文献   
2.
As the production of local vehicles increases, the impact of end-of-life vehicles (ELVs) wastes to the environment will also increase. ELVs recovery including reuse, remanufacture, and recycle apparently become a strategy in solving this environmental problem. This study identifies the existing conditions of automotive reuse in Malaysia by conducting some interviews in selected local automotive and automotive component manufacturers. Results from the interviews indicated that reuse of automotive components in newly manufactured vehicles has never been practiced by the selected companies. However, there is interest among respondents in developing automotive components for after-market reuse. Some strategies were proposed in this study to initiate automotive components reuse in the local automotive manufacturers including the establishment of the end-of-life directive, enhance research and development on design for reuse and increase reusability and economic benefits of reuse.  相似文献   
3.
The purpose of this study is to examine the critical success factors of sustainable manufacturing practices (SMPs) in Malaysian automotive industry. The questionnaires were designed and distributed to the 50 respondents. The pilot study sample consists of 26 respondents from 50 questionnaires, with an average response rate of 52%. The results of reliability analysis show that social responsibility is critical factor influencing the direct SMPs implementation success. By implementing SMPs in Malaysian automotive industry, it can assist company to improve the quality of management. Thus, this study recommends that the future research explore the influence of SMPs on sustainable performance in Malaysian automotive industry.  相似文献   
4.
Ninety-nine human blood samples were collected from the riverine region of northern Sudan and the traditional and mechanized rain-fed areas of western and eastern Sudan, representing areas of limited pesticide use in Sudan. Blood samples were analyzed for organochlorine pesticides by gas liquid chromatography (GLC) followed by electron-capture detection (ECD). p,p′-DDE (a metabolite of DDT), heptachlor epoxide, β-hexachlorocyclohexane (β-HCH), and dieldrin were detected in all locations surveyed. The level of total organochlorine burden was highest in the traditional rain-fed area, followed by the mechanized rain-fed area, and the riverine area. A highly significant correlation was observed between total organochlorine blood burden and the age of the donors (r = 0.608**).  相似文献   
5.
This paper compared the life cycle inventory (LCI) obtained from three commercial oil palm biomass composting projects in Malaysia which use the open windrow composting system. The LCI was obtained and calculated based on the functional unit of 1 t of compost produced. The input of the inventory are the feed materials such as empty fruit bunches (EFB) and palm oil mill effluent (POME); and utilities which include electricity generated at palm oil mill and diesel used. Composting 2.0–2.5 t of EFB and 5.0–7.5 t of POME required diesel from 218.7 to 270.2 MJ and electricity from 0 to 6.8 MJ. It is estimated that the composting emitted from 0.01 to 0.02 t CO2eq/tcompost mainly from diesel used to operate machineries. Composting saved 65 % of time required for a complete degradation of POME when compared to ponding system, and 89 % of time required for a complete degradation of EFB compared to mulching. In terms of land required, it required 36 % less land as compared to ponding for POME and 99 % less land as compared to mulching for EFB. Based on the case study, diesel was found to be the main contributor to the environmental impact. There is a potential of upgrading the process to be more economical and environmental friendly. Using electricity as the source of energy has a lower footprint for the composting process. Instead of using raw POME, studies had reported that using treated POME either from anaerobic ponding or digested tank can accelerate the composting process.  相似文献   
6.
Environmental Science and Pollution Research - The current work aimed to study the physical, chemical and biological properties of food wastes generated from small and medium industries by using...  相似文献   
7.
This article is a case study to compare the economic viabilities of biogas generation and compost projects in a palm oil mill in Malaysia with and without clean development mechanism (CDM). Biogas is captured from anaerobic ponds or digester tanks treating palm oil mill effluent (POME) and converted to green renewable electricity for grid connection, while compost is produced from the shredded empty fruit bunch and raw untreated POME. The both technologies were compared by considering the changes of the materials flow and energy balances. A palm oil mill with a capacity of 54?t fresh fruit bunch per hour has the potential to produce either 6.9?GWh of electricity from biogas or fertilizer equivalent to 488?t of nitrogen, 76?t of phosphorus and 1,065?t of potassium per year. The economic analysis for 10?years project term analysis indicated that CDM gave a significant impact and ensured economic viability for both projects with 25?% of internal rate of return (IRR), RM 12.39 million of net present value (NPV) and 3.5?years of payback period (PBP) for biogas project, whereas 31?% of IRR, RM 10.87 million of NPV and 2.9?years of PBP for compost project, respectively. In addition, sensitivity analysis indicated that the profitability of both projects will vary depending on the economic situation, such as electricity price which is based on the government policy, whereas compost price that depend on fertilizer market price with 43?% NPV change in 20?% range of fertilizer value.  相似文献   
8.
Kitchen wastes containing high amounts of carbohydrates have potential as low-cost substrates for fermentable sugar production. In this study, enzymatic saccharification of kitchen waste was carried out. Response surface methodology (RSM) was applied to optimize the enzymatic saccharification conditions of kitchen waste. This paper presents analysis of RSM in a predictive model of the combined effects of independent variables (pH, temperature, glucoamylase activity, kitchen waste loading, and hydrolysis time) as the most significant parameters for fermentable sugar production and degree of saccharification. A 100 mL of kitchen waste was hydrolyzed in 250 mL of shake flasks. Quadratic RSM predicted maximum fermentable sugar production of 62.79 g/L and degree of saccharification (59.90%) at the following optimal conditions: pH 5, temperature 60°C, glucoamylase activity of 85 U/mL, and utilized 60 g/L of kitchen waste as a substrate at 10 h hydrolysis time. The verification experiments successfully produced 62.71 ± 0.7 g/L of fermentable sugar with 54.93 ± 0.4% degree of saccharification within 10 h of incubation, indicating that the developed model was successfully used to predict fermentable sugar production at more than 90% accuracy. The sugars produced after hydrolysis of kitchen waste were mainly attributed to monosaccharide: glucose (80%) and fructose (20%). The fermentable sugars obtained were subsequently used as carbon source for bioethanol production by locally isolated yeasts: Saccharomyces cerevisiae, Candida parasilosis, and Lanchancea fermentati. The yeasts were successfully consumed as sugars hydrolysate, and produced the highest ethanol yield ranging from 0.45 to 0.5 g/g and productivity between 0.44 g L–1 h–1 and 0.47 g L–1 h–1 after 24-h incubation, which was equivalent to 82.06–98.19% of conversion based on theoretical yield.  相似文献   
9.
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1 (V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis (DGGE). The compost was able to reach its highest temperature of 71 ℃ at day 3 and stabilized between 30 and 40 ℃ for 8 weeks. CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both LiP and MnP activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16S rDNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号