首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
环保管理   24篇
综合类   1篇
污染及防治   3篇
灾害及防治   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有29条查询结果,搜索用时 484 毫秒
1.
ABSTRACT: Individual particle analysis (IPA) by scanning electron microscopy interfaced with automated image and X‐ray analyses was used to characterize inorganic particles in five reservoirs and four tributaries located within the Catskill and Delaware systems of the New York City water supply. Individual particle analysis provides combined elemental and morphologic characterizations. Results are presented in terms of particle projected area per unit volume (PAV), consistent with optical impacts, and partitioned into seven generic particle types according to composition. Minerals of terrigenous origins, particularly clay minerals, dominated the inorganic particle populations of all the study systems except one downstream reservoir. Higher PAV levels were observed in the Catskill system. Particle dynamics represented by PAV were driven primarily by runoff, while the reservoirs were also greatly influenced by the timing of sediment resuspension promoted by drawdown of the surface and fall mixing. The benefit of the serial configuration of the reservoirs in decreasing inorganic particles with progression downstream towards the city is demonstrated. The patterns in PAV levels among the study systems generally tracked those of more common metrics of impacts of suspensoids, including mass concentrations of suspended solids, turbidity, and Secchi disc transparency.  相似文献   
2.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
3.
ABSTRACT: The thermal stratification characteristics of a flow-augmentation reservoir, Round Valley Reservoir, New Jersey, and attendant driving conditions were documented and analyzed for portions of three years. Substantial differences in the thermal stratification regime of the reservoir occurred in response to the documented changes in meteorological, operating, and light penetration conditions. The features of stratification that were affected included: the depth of the upper mixed layer, the average temperature of the epilimnion, the temperature gradient in the metalimnion, and the average temperature in the hypolimnion.  相似文献   
4.
Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall. All of these diminishing effects were found to be operative for the Metro effluent in Onondaga Lake and will be integrated into a forthcoming phosphorus "total maximum daily load" analysis for the lake, through appropriate representation in a supporting mechanistic water quality model. The particulate phosphorus in the effluent was associated entirely with Fe-rich particles formed in the phosphorus treatment process. These particles did not contribute to concentrations in pelagic portions of the lake, due to local deposition associated with their large size. Moreover, this particulate phosphorus was found to be nearly entirely unavailable to support algae growth. While substantial differences are to be expected for various inputs, the effective loading concept and the approaches adopted here to assess the diminishing factors are broadly applicable.  相似文献   
5.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   
6.
Staib  A. H.  Effler  K. 《Die Naturwissenschaften》1966,53(22):583-584
The Science of Nature -  相似文献   
7.
8.
ABSTRACT: Seventy-three in situ primary productivity experiments over a six-month period in hypereutrophic Onondaga Lake near Syracuse, New York, demonstrated variations in the light saturation parameter, Ip, which in part describes the interaction between productivity and light. Substantial variations in Ip were observed (coefficient of variation = 60 percent). Variations in Ip were significantly correlated (greater than 99 percent confidence level) with temperature (°C). An Arrhenius-type relationship (Ip= 1.312 × 1.088 (T-20)) accounted for approximately 37 percent of the variation in Ip and may be appropriate for other systems dominated by green algae.  相似文献   
9.
Lake-sediment records across the Northern Hemisphere show increases in atmospheric deposition of anthropogenic mercury (Hg) over the last 150 years. Most of the previous studies have examined remote lakes affected by the global atmospheric Hg reservoir. In this study, we present Hg flux records from lakes in an urban/suburban setting of central New York affected also by local and regional emissions. Sediment cores were collected from the Otisco and Skaneateles lakes from the Finger Lakes region, Cross Lake, a hypereutrophic lake on the Seneca River, and Glacial Lake, a small seepage lake with a watershed that corresponds with the lake area. Sediment accumulation rates and dates were established by 210Pb. The pre-anthropogenic regional atmospheric Hg flux was estimated to be 3.0 μg m−2 yr−1 from Glacial Lake, which receives exclusively direct atmospheric deposition. Mercury fluxes peaked during 1971–2001, and were 3 to more than 30 times greater than pre-industrial deposition. Land use change and urbanization in the Otisco and Cross watersheds during the last century likely enhanced sediment loads and Hg fluxes to the lakes. Skaneateles and Glacial lakes have low sediment accumulation rates, and thus are excellent indicators for atmospheric Hg deposition. In these lakes, we found strong correlations with emission records for the Great Lakes region that markedly increased in the early 1900s, and peaked during WWII and in the early 1970s. Declines in modern Hg fluxes are generally evident in the core records. However, the decrease in sediment Hg flux at Glacial Lake was interrupted and has increased since the early 1990s probably due to the operation of new local emission sources. Assuming the global Hg reservoir tripled since the pre-industrial period, the contribution of local and regional emission sources to central New York lakes was estimated to about 80% of the total atmospheric Hg deposition.  相似文献   
10.
ABSTRACT: Results from five different test systems, which include a wide range of optical conditions, indicate credible estimates of the values of the absorption and scattering coefficients can be calculated from paired measurements of Secchi disc transparency and the diffuse attenuation coefficient. The diagnostic utility of the estimates in identifying components and processes that regulate light penetration is demonstrated for three different cases. The simple estimation technique is valuable in the analysis of existing data bases that lack comprehensive optical information to develop and evaluate alternate models for light penetration and to establish the experimental needs of future field programs to support lake management efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号