首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
环保管理   6篇
污染及防治   1篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2009年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall. All of these diminishing effects were found to be operative for the Metro effluent in Onondaga Lake and will be integrated into a forthcoming phosphorus "total maximum daily load" analysis for the lake, through appropriate representation in a supporting mechanistic water quality model. The particulate phosphorus in the effluent was associated entirely with Fe-rich particles formed in the phosphorus treatment process. These particles did not contribute to concentrations in pelagic portions of the lake, due to local deposition associated with their large size. Moreover, this particulate phosphorus was found to be nearly entirely unavailable to support algae growth. While substantial differences are to be expected for various inputs, the effective loading concept and the approaches adopted here to assess the diminishing factors are broadly applicable.  相似文献   
2.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   
3.
Abstract: The impacts of runoff events on external suspended solids loading to Schoharie Reservoir, New York, and patterns of light scattering and sediment deposition in this reservoir are assessed. The assessment is based on monitoring of suspended solids concentrations in the reservoir's primary tributary, detailed vertical profiles of optical backscattering (a surrogate measure of light scattering) in the reservoir water column, and analysis of sediment trap collections, over a seven-month interval of high runoff. These impacts are reported to be tightly temporally coupled and strongly positively related to the magnitude of runoff events. The primary tributary entered the reservoir as a plunging inflow during runoff events, causing conspicuous subsurface peaks in light scattering, with vertical patterns that varied strongly for different events. Deposition quantified by near-bottom trap deployments is reported to be more representative than results from metalimnetic deployments that were generally within, rather than below, the turbid layers. Direct inputs of sediment, transported by density currents, are found to drive deposition, rather than resuspension/redeposition. More than 50 percent of the reported deposition occurred in less than 15 percent of the study period, associated with the four largest runoff events.  相似文献   
4.
Abstract: A combination of long‐term fixed‐frequency and robotic monitoring information for a polluted urban lake, Onondaga Lake, New York, and two of its tributaries is used to resolve the propensity for, and occurrences of, tributary plunging. Cooler temperatures (T) and higher salinity (S) are primarily responsible for the elevated density and plunging of one of these polluted streams for the summer through early fall interval. In‐lake transport of this plunging tributary, which receives inputs from combined sewer overflows (CSOs), is tracked by its high S during dry weather, its high turbidity (Tn) with associated lower S (dilution with rainwater) following runoff events, and by its characteristic ionic composition. These signatures are documented extending from the creek mouth, through a connecting navigation channel, through the inflow zone of the lake, and into metalimnetic depths of pelagic portions of the lake. The entry of this polluted tributary below the depth interval(s) of primary production and contact recreation has important implications for the ongoing major rehabilitation program for this lake. The plunging phenomenon diminishes the benefits previously expected for related features of the lake’s water quality from ongoing management efforts to abate CSO inputs and reduce nonpoint nutrient loading from the tributary. Previously this tributary tended to instead enter the upper layers of the lake during the operation of an adjoining soda ash manufacturing facility (closure in 1986), as a result of high lake S caused by the industry’s ionic waste discharge.  相似文献   
5.
Effler, Steven W., Anthony R. Prestigiacomo, David A. Matthews, and Feng Peng, 2012. Sources and Sinks of Phosphorus for a Perturbed Stream and the Effects of Mineral Deposits. Journal of the American Water Resources Association (JAWRA) 48(2): 321‐335. DOI: 10.1111/j.1752‐1688.2011.00617.x Abstract: Patterns of concentrations and loading rates of multiple forms of phosphorus (P) are resolved and analyzed along Ninemile Creek, New York, a stream perturbed by a domestic waste discharge and residual effects of a closed industry. This analysis is based on biweekly monitoring of total, dissolved, and soluble reactive P (SRP) for 19 months at four sites that bracket each of these effects, and 15 years of biweekly measurements at the two sites that bound industrial deposits. The minerogenic particle populations of the stream and the surficial sediments along the reach with extensive CaCO3 and clay mineral deposits are characterized with an individual particle analysis technique. Mass balance analyses depict: (1) increasing nonpoint inputs of particulate and dissolved organic P along the stream length; (2) input of P from a domestic waste facility, almost entirely in the form of SRP; and (3) a compensating downstream loss of SRP over the reach with the extensive industrial deposits of CaCO3. The downstream sink process for SRP is attributed to sorption processes with minerogenic deposits. The domestic waste‐based source and the compensating industrial waste‐based sink are noteworthy fluxes relative to other prevailing loads received by downstream Onondaga Lake, for which a major rehabilitation program targeting cultural eutrophication is underway. The P source/sink conditions of this stream are considered in the context of this rehabilitation program.  相似文献   
6.
The integration of the phosphorus (P) bioavailability concept into a P loading analysis for Cayuga Lake, New York, is documented. Components of the analyses included the: (1) monitoring of particulate P (PP), soluble unreactive P (SUP), and soluble reactive P (SRP), supported by biweekly and runoff event‐based sampling of the lake's four largest tributaries; (2) development of relationships between tributary P concentrations and flow; (3) algal bioavailability assays of PP, SUP, and SRP from primary tributaries and the three largest point sources; and (4) development of P loading estimates to apportion contributions according to individual nonpoint and point sources, and to represent the effects of interannual variations in tributary flows on P loads. Tributary SRP, SUP, and PP are demonstrated to be completely, mostly, and less bioavailable, respectively. The highest mean bioavailability for PP was observed for the stream with the highest agriculture land use. Point source contributions to the total bioavailable P load (BAPL) are minor (5%), reflecting the benefit of reductions from recent treatment upgrades. The BAPL represented only about 26% of the total P load, because of the large contribution of the low bioavailable PP component. Most of BAPL (>70%) is received during high flow intervals. Large interannual variations in tributary flow and coupled BAPL will tend to mask future responses to changes in individual inputs.  相似文献   
7.
Owens, Emmet M., Steven W. Effler, Anthony R. Prestigiacomo, David A. Matthews, and Susan M. O’Donnell, 2012. Observations and Modeling of Stream Plunging in an Urban Lake. Journal of the American Water Resources Association (JAWRA) 48(4): 707‐721. DOI: 10.1111/j.1752‐1688.2012.00646.x Abstract: The plunging behavior of two tributaries in Onondaga Lake, New York, is quantified based on a program of monitoring, process studies, and modeling. The dynamics of buoyancy of the tributaries are resolved with hourly measurements of temperature (T), specific conductance (SC), and turbidity (Tn) at the mouths, and observations every 6 h in the lake. Negative buoyancy of the tributaries is found to diminish and change rapidly during runoff events compared to dry periods. In‐lake patterns of the transport of plunging inflow are resolved for dry weather conditions using a dye tracer, and following a runoff event through measurements of T, SC, and Tn. The hydrodynamic/transport model ELCOM (Estuary Lake and Coastal Ocean Model) is demonstrated to perform well in simulating these patterns. Analyses conducted with the model establish the importance of diurnal effects and in‐lake mixing mediated by wind, the need for temporally detailed measurements during runoff events, and modifications of the plunging behavior of the urban tributary as it passes through a harbor. The model provides critical information to support rehabilitation programs for the lake by quantifying the transport of the two largest tributaries, particularly the distribution of the loads between the upper waters and stratified layers. The model predicts that 10% of the urban tributary load enters the upper waters of the lake within 24 h for a dry weather period; this portion increases to 30% for a runoff event.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号