首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   3篇
综合类   1篇
污染及防治   1篇
评价与监测   1篇
  2021年   1篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage.  相似文献   
3.
Environmental Science and Pollution Research - Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications....  相似文献   
4.
5.
Making new plants CO2 capture ready (CCR) would enable them to retrofit to capture CO2 at a later date at lower cost when the appropriate policy and/or economic drivers are in place. In order to understand the economic value and investment characteristics of making new plants CCR in China, a typical 600 MW pulverised coal-fired ultra-supercritical power plant, locating in Guangdong province, was examined. Combined with an engineering assessment, costs were estimated for different CCR scenarios. To analyze CCR investment opportunities, the paper applies a cash flow model for valuing capture options and CCR investment. Results were obtained by Monte-Carlo simulation, based on engineering surveys and an IEA GHG CCR study, as well as plant performance information and expert projections on carbon prices, coal prices and electricity prices.CCR investments are justified by factors such as higher retrofitting probabilities, lower early closure probabilities and fair economic return. However, the economic case for CCR largely depends on two factors: (a) whether the original plant is retrofittable without CCR; and (b) the type of investments made, for example, investments essential to CCR tend to be more economic than additional non-essential CCR features such as clutched low pressure turbines. The carbon price and discount rate were found to have significant impacts on the economics of CCR. Overall, it appears that the value of the ‘capture options’ that CCR generates for retrofitting CCS is significant, and so could justify a modest CCR investment, even assuming the original plant is retrofittable without CCR. It was also found the value of CCR might be significantly understated if the range of potential retrofitting dates is artificially constrained.  相似文献   
6.
An important development in recent years has been increased interest in retrofitting CO2 capture at existing power plants. In parallel, it has also been suggested that flexible operation of power plants with CO2 capture could be important in at least some jurisdictions. It is likely that retrofitted power plants could have significant ??built-in?? flexibility, but this potential is often not considered in studies of the economic performance of power plants with CO2 capture. This paper makes a contribution to filling this gap by developing methods for first order screening analysis of flexible operation of power plants with CO2 capture and applying them to the case study example of an appropriately integrated retrofit of post-combustion capture at a coal-fired power plant. The quantitative analysis suggests that rich solvent storage could be an attractive option on a short-run basis for some fuel, CO2 and electricity price combinations. Results from first order analysis can then be used to determine which operating modes should (and shouldn??t) be included in further, more detailed design studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号