首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   2篇
环保管理   7篇
综合类   4篇
基础理论   2篇
污染及防治   8篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Environmental Science and Pollution Research - Anaerobic batch experiments were conducted to study the regulatory role of endogenous iron in greenhouse gas emissions under intensive nitrogen...  相似文献   
2.
Polymer application to soil is a growing practice to improve soil physical properties and reduce soil erosion. Polymer addition can potentially influence herbicide and pesticide sorption in soil. The one-point distribution coefficient Kd values of two herbicides in the absence and presence of each of 10 polymers (7 polyacrylamides and 3 polysaccharides) were determined by the batch equilibrium method. The results showed that nonionic napropamide [2-(alpha-naphthoxy)-N,N-diethyl propionamide] sorption was essentially unaffected by the presence of any of the polymers. The influence of polymers on anionic picloram (4-amino-3,5,6-trichloropicolinic acid) sorption depends on the charge characteristics of polymers and salt concentrations in the solution. Electrostatic interaction and competition for sorption sites are two primary underlying mechanisms for the polymer influence. At low salt concentration, the increased picloram sorption in the presence of both cationic and anionic polymers was attributed to different electrostatic interactions and polymer partitioning between soil and solution phases. At high salt levels, the presence of polymers had either no influence or a slightly negative influence on the picloram sorption, which was attributed to competition for sorption sites. In field conditions, it is more likely that polymers have no or a slightly negative influence on herbicide sorption due to the presence of salts.  相似文献   
3.
Knowledge of pesticide distribution and persistence in nursery recycling pond water and sediment is critical for preventing phytotoxicity of pesticides during water reuse and to assess their impacts to the environment. In this study, sorption and degradation of four commonly used pesticides (diazinon, chlorpyrifos, chlorothalonil, and pendimethalin) in sediments from two nursery recycling ponds was investigated. Results showed that diazinon and chlorothalonil were moderately sorbed [K(OC) (soil organic carbon distribution coefficient) from 732 to 2.45 x 10(3) mL g(-1)] to the sediments, and their sorption was mainly attributable to organic matter content, whereas chlorpyrifos and pendimethalin were strongly sorbed (K(OC) > or = 7.43 x 10(3) mL g(-1)) to the sediments, and their sorption was related to both organic matter content and sediment texture. The persistence of diazinon and chlorpyrifos was moderate under aerobic conditions (half-lives = 8 to 32 d), and increased under anaerobic conditions (half-lives = 12 to 53 d). In contrast, chlorothalonil and pendimethalin were quickly degraded under aerobic conditions with half-lives < 2.8 d, and their degradation was further enhanced under anaerobic conditions (half-lives < 1.9 d). The strong sorption of chlorpyrifos and pendimethalin by the sediments suggests that the practice of recycling nursery runoff would effectively retain these compounds in the recycling pond, minimizing their offsite movement. The prolonged persistence of diazinon and chlorpyrifos, however, implies that incidental spills, such as overflows caused by storm events, may contribute significant loads of such pesticides into downstream surface water bodies.  相似文献   
4.
Norfloxacin (Nor) sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing of Nor concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity in SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and KOC were achieved in soil R when the equilibrium solution pH was 6. And the norfloxacin sorption was also influenced by the exogenous Cu2+ ions, which depended on the soil types and Cu2+ concentrations. With increasing of Cu2+ concentrations in solution, generally, sorption amount, KD and KOC for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu2+, and then the sorption amount decreased regardless of norfloxacin levels.  相似文献   
5.
In this study we developed and tested a spray method to visualize bromide water tracer in soil profiles. The method is based on the transformation reaction of a white precipitate into a colored one (Prussian blue) in the presence of Br-. After application of water containing bromide (0.2-0.4% wt.), a soil profile is dug out from the irrigated area and sprayed with a Br- indication suspension containing ferric ion and silver ferrocyanide precipitate. About two hours later, the pattern of irrigation water movement in the soil profile appears due to the formation of Prussian blue complex. We describe the method and demonstrate its use in a field experiment to visualize water flow paths. Since this method might be subject to possible interference from Cl-, a newly designed method with iodide ion as a water tracer and its indication solution containing soluble starch and ferric ion is also presented and recommended for use in soils with high chloride background.  相似文献   
6.
Knowledge of how polyacrylamide (PAM) penetrates and distributes in a soil profile after application in irrigation water is important for understanding PAM conditioning depth and evaluating its environmental effects. Little is known, however, about PAM distribution in soil because of the difficulty in quantifying PAM content in natural soils. By using a recently modified substrate-borne PAM quantification method, PAM distribution in columns of organic matter-removed soils was determined. Results showed that penetration of PAM into the soil was affected by salt level of irrigation water, soil texture, initial soil water content, water application method, and other factors. Polyacrylamide penetration depth was about one-eighth to one-half of the water penetration depth, with a particularly high PAM retention in the top few centimeters of the soil. Under different experimental conditions, the PAM retained in the top 0 to 2 cm of soil ranged from 16 to 95% of the total applied amount. More favorable solution-soil contact conditions, longer solution-soil contact time, and lower initial soil moisture caused much more PAM retention in the top few centimeters of the soil. High sorptive affinity of PAM on soil is the main reason for its low penetration into the soil. Although these results were not obtained from natural soils, they are still helpful in improving our understanding of PAM transport behavior in soils.  相似文献   
7.
4种农药(百菌清,甲霜灵,毒死蜱和敌百虫)施用于草坪后,挥发和渗漏损失分别不足3%和1%,其主要损失途径在草坪的草皮,草根层(0-2cm),而且呈指数模型衰减,衰减最快的是敌百虫,最慢的是毒死蜱,但在土壤中(2-10cm土层及以下层),这些杀虫剂的衰减明显较慢,2种模型模拟这4种农药施用草坪后的损失过程表明:CHAIN2D的效果较PRZM的好,尤其是模拟挥发和渗漏损失过程,CHAIN2D的模拟结果与观测值有较好的一致性,而PRZM模拟的结果,参漏损失比观测的明显过多,挥发损失则明显过少;2种模型模拟这4种农药在土壤中的衰减过程,效果较不满意,特别是模拟的初期结果与实测的差异较大。  相似文献   
8.
Phosphate and micronutrient fertilizers contain potentially harmful trace elements, such as arsenic (As), cadmium (Cd), and lead (Pb). We investigated if application of these fertilizer increases the As, Cd, and Pb concentrations of the receiving soils. More than 1000 soil samples were collected in seven major vegetable production regions across California. Benchmark soils (no or low fertilizer input) sampled in 1967 and re-sampled in 2001 served as a baseline. Soils were analyzed for total concentrations of As, Cd, Pb, P, and Zn. The P and Zn concentrations of the soils were indicators of P fertilizer and micronutrient inputs, respectively. Results showed that the concentrations of these elements in the vegetable production fields in some production areas of California had been shifted upward. Principal component analysis and cluster analysis showed that the seven production areas could be sorted into three categories: (i) enrichment of As, Cd, and Pb, which was associated with the enrichment of P and Zn in one of the seven areas surveyed; (ii) enrichment of As, which was associated with enrichment of Zn in two of the seven areas surveyed; and (iii) no remarkable correlation between enrichment of As, Cd, and Pb and enrichment of P and Zn in the other four areas surveyed.  相似文献   
9.
Polyacrylamide (PAM) treatment of irrigation water is a growing conservation technology in irrigated agriculture in recent years. There is a concern regarding the environmental impact of PAM after its application. The effects of anionic PAM on the sorption characteristics of four widely used herbicides (metolachlor, atrazine, 2,4-D, and picloram) on two natural soils were assessed in batch equilibrium experiments. Results showed that PAM treatment kinetically reduced the sorption rate of all herbicides, possibly due to the slower diffusion of herbicide molecules into interior sorption sites of soil particles that were covered and/or cemented together by PAM. The equilibrium sorption and desorption amounts of nonionic herbicides (metolachlor and atrazine) were essentially unaffected by anionic PAM, even under a high PAM application rate, while the sorption amounts of anionic herbicides (2,4-D and picloram) were slightly decreased and their desorption amounts increased little. The impact mechanisms of PAM were related to the molecular characteristics of PAM and herbicides. The negative effects of PAM on the sorption of anionic herbicides are possibly caused by the enhancement of electrostatic repulsion by presorbed anionic PAM and competition for sorption sites. However, steric hindrance of the large PAM molecule weakens its influence on herbicide sorption on interior sorption sites of soil particles, which probably leads to the small interference on herbicide sorption, even under high application rates.  相似文献   
10.
Developing realistic soil carbon (C) sequestration strategies for China’s sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%–40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2–0.25 and 0.25–0.02 mm aggregate size fractions. σ13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter @1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with di erent pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号