首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
污染及防治   2篇
社会与环境   3篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
2.
This paper tests the hypothesis that relocation of pig production within the EU27 can reduce the external costs of nitrogen (N) pollution. The external cost of pollution by ammonia and nitrate from agriculture in the European Union (EU27) in 2008 was estimated at 61–215 billion € (0.5 to 1.8% of the GDP). Per capita it ranged from more than 1000 € in north-west EU27 to 50 € in Romania. The average contribution of pig production was 15%. Using provincial data (224 NUTS2 regions in EU27), the potential reduction of external N cost by relocation of pig production was estimated at 14 billion € (10% of the total). Regions most eligible for decreasing the pig stock were in western Germany, Flemish region, Denmark, the Netherlands and Bretagne, while Romania is most eligible for increasing pig production. Relocating 20 million pigs (13% of the total EU stock) decreased average external costs per capita from 900 to 785 € in the 13 NUTS2 regions where pigs were removed and increased from 69 to 107 € in 11 regions receiving pigs. A second alternative configuration of pig production was targeted at reducing exceedance of critical N deposition and closing regional nutrient cycles. This configuration relocates pigs within Germany and France, for example from Bretagne to Northern France and from Weser-Ems to Oberbayern. However, total external cost increases due to an increase of health impacts, unless when combined with implementation of best N management practices. Relocation of the pig industry in the EU27 will meet many socio-economic barriers and realisation requires new policy incentives.  相似文献   
3.
Differentiation of nitrous oxide emission factors for agricultural soils   总被引:3,自引:0,他引:3  
Nitrous oxide (N2O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N2O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N2O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach.  相似文献   
4.
The global animal food chain has a large contribution to the global anthropogenic greenhouse gas (GHG) emissions, but its share and sources vary highly across the world. However, the assessment of GHG emissions from livestock production is subject to various uncertainties, which have not yet been well quantified at large spatial scale. We assessed the uncertainties in the relations between animal production (milk, meat, egg) and the CO2, CH4, and N2O emissions in Africa, Latin America and the European Union, using the MITERRA-Global model. The uncertainties in model inputs were derived from time series of statistical data, literature review or expert knowledge. These model inputs and parameters were further divided into nine groups based on type of data and affected greenhouse gas. The final model output uncertainty and the uncertainty contribution of each group of model inputs to the uncertainty were quantified using a Monte Carlo approach, taking into account their spatial and cross-correlation. GHG emissions and their uncertainties were determined per livestock sector, per product and per emission source category. Results show large variation in the GHG emissions and their uncertainties for different continents, livestock sectors products or source categories. The uncertainty of total GHG emissions from livestock sectors is higher in Africa and Latin America than in the European Union. The uncertainty of CH4 emission is lower than that for N2O and CO2. Livestock parameters, CH4 emission factors and N emission factors contribute most to the uncertainty in the total model output. The reliability of GHG emissions from livestock sectors is relatively high (low uncertainty) at continental level, but could be lower at country level.  相似文献   
5.
Following the recognition of the detrimental effects of nitrogen (N) losses from agriculture in the European Union (EU) on human health and environment, series of environmental policy measures have been implemented from the early 1990s onwards. However, these measures have only been partially successful. Clearly, there is lack of integration of available measures and there is lack of enforcement and hierarchy; which measures should be implemented first? We identified and assessed three ‘most promising measures’ to decrease N losses from agriculture, i.e., (i) balanced fertilization, (ii) low-protein animal feeding, and (iii) ammonia (NH3) emissions abatement measures. Environmental-economic assessments were made using scenario analyses and the modeling tools MITERRA-EUROPE and CAPRI.In the baseline scenario (business as usual), N use efficiency (NUE) in crop production increases from 44% in 2000 to 48% in 2020, while total N losses decrease by 10%. Implementation of promising measures increases NUE further to 51–55%, and decreases NH3 emissions (by up to 23%), nitrous oxide (N2O) emissions (by up to 10%) and N leaching losses (by up to 35%). Differences in responsiveness to promising measures varied between and within Member States. Strict implementation of balanced fertilization in nitrate vulnerable zones, as defined in the Nitrates Directive, decreases total farmers’ income in EU-27 by 1.7 billion euros per year. Implementation of all three measures decreases farmers income by 10.8 and total welfare by 17 billion euros per year, without valuing the environmental benefits.The study presented here is one of the first EU-wide integrated assessments of the effects of policy measures on all major N losses from agriculture and their economic costs. Our results show that the most promising measures are effective in enhancing NUE and decreasing NH3 and N2O emissions to the atmosphere and N leaching to groundwater and surface waters, but that income effects are significant. The order of implementation of the measures is important; NH3 emissions abatement measures must be implemented together with balanced N fertilization.  相似文献   
6.
A comparison of nitrogen (N) budgets for the year 2000 of agro-ecosystems is made for the EU 27 countries by four models with different complexity and data requirements, i.e. INTEGRATOR, IDEAg, MITERRA and IMAGE. The models estimate a comparable total N input in European agriculture, i.e. 23.3–25.7 Mton N yr−1, but N uptake varies more, i.e. from 11.3 to 15.4 Mton N yr−1 leading to total N surpluses varying from 10.4 to 13.2 Mton N yr−1. The estimated overall variation at EU 27 is small for the emissions of ammonia (2.8–3.1 Mton N yr−1) and nitrous oxide (0.33–0.43 Mton N yr−1), but large for the sum of N leaching and runoff (2.7–6.3 Mton N yr−1). Unlike the overall EU estimates, the difference in N output fluxes between models is large at regional scale. This is mainly determined by N inputs, differences being highest in areas with high livestock density.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号