首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
废物处理   1篇
污染及防治   2篇
  2020年   2篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1065-1066
Ambio - In the original published article, the sentence “Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and...  相似文献   
2.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1050-1064

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden’s red-list, and Sweden’s 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden’s protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden’s long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.

  相似文献   
3.
The use of vegetable oil as an electron donor to enhance the reductive dechlorination of chlori‐nated solvents as an in situ remediation technology is gaining significant traction. Vegetable oil is a cost‐effective slow‐release electron donor with greater hydrogen‐release efficiency than other electron‐donor products. However, neat vegetable oil can inhibit distribution in aquifers due to the oil droplets blocking the flow of groundwater through the smaller pore spaces in the aquifer materials. This issue has been partially overcome by applying the vegetable oil as an oil‐water emulsion, which typically is created in the field. However, the field preparation results in a mixture of droplet sizes, including larger droplets that can make the emulsions unstable and reduce the soil permeability by blocking soil‐pore throats with oil. RNAS, Inc., has developed a kinetically sta‐ble soybean oil emulsion (“Newman Zone”) consisting of submicron droplets with less droplet‐size variation than field‐prepared emulsions. This product is composed of a blend of fast‐release (sodium lactate) and slow‐release (soybean oil) electron donors. The emulsion is produced in a stable factory environment in which it is pasteurized and packaged in sterile packaging. This ma‐terial can be utilized as an electron donor without further treatments or amendments in the field. This article discusses factors associated with selecting electron donors and the development of vegetable oil–based products. A case study of an application of Newman Zone at a former adhe‐sives manufacturing facility is then presented. The case study demonstrates the effect of Newman Zone in reducing chlorinated solvent concentrations in groundwater by both rapidly stimulating initial microbial activity and supporting long‐term reductive dechlorination with a slow‐release electron donor. © 2006 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号