首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
• DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 had similar behavior. • In NH4OAc, DTPA, and EDTA, the possibility of re-adsorption of trace elements is low. • CaCl2 may be more suitable than other extracts in calcareous soils. Understanding trace elements mobility in soils, extracting agents, and their relationships with soil components, are essential for predicting their movement in soil profile and availability to plants. A laboratory study was conducted to evaluate extractability of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), and zinc (Zn) from calcareous soils utilizing various extracting agents to be specific CaCl2, DTPA, EDTA, HNO3, MgCl2, NaNO3, NH4NO3, and NH4OAc. Cluster analysis indicated that DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 extracting agents yielded comparative values, whereas NaNO3 and CaCl2 have shown different behavior than other extracting agents for all studied trace elements. The speciation of extracted trace elements in solutions indicated that in the CaCl2, NaNO3, NH4NO3, and MgCl2 extracting agents most extracted Cd, Co, Ni, Zn, and part of Cu were as free ions and may be re-adsorbed on soils, leading to lower extractability, whereas, in the case of HNO3 extracting agent, the likelihood of re-adsorption of trace elements may be little. The results of speciation of trace elements using NH4OAc, DTPA, and EDTA extracting agents showed that Me-(Acetate)3, Me-(Acetate)2(aq), Me(DTPA)3, Me(EDTA)2, and MeH(EDTA) complexes dominated in solutions indicating that the extracted trace elements may not be re-adsorbed on soils, leading to higher extractability. The results of this study are useful for short and long-term evaluations of trace elements mobility and further environmental impacts.  相似文献   
2.
Environmental Science and Pollution Research - In the present work, the effect of graphene oxide (GO) architecture and synthesis of gold nanoparticles (AuNPs) on the surface of GO by using...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号