首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   3篇
基础理论   3篇
评价与监测   1篇
  2022年   1篇
  2020年   1篇
  2011年   1篇
  2006年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
The evaluation of dispersant effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. We used a Hot Wire Anemometer (HWA) to characterize mixing dynamics in the Swirling Flask (SF) and the Baffled Flask (BF), the latter is being considered by the EPA to replace the prior to test dispersant effectiveness in the laboratory. Five rotation speeds of the orbital shaker carrying the flasks were considered, Ω = 50, 100, 150, 175 and 200 rpm. The radial and azimuthal water speeds were measured for each Ω. It was found that the flow in the SF is, in general, two-dimensional changing from horizontal at low Ω to axi-symmetric at high Ω. The flow in the BF appeared to be three-dimensional at all rotation speeds. This indicates that the BF is more suitable for representing the (inherently) 3-D flow at sea. In the SF, the speeds and energy dissipation rates ɛ increased gradually as the rotation speed increased. Those in the BF increased sharply at rotation speeds greater than 150 rpm. At 200 rpm, the Kolmogorov scale (i.e., size of smallest eddies) was about 250 and 50 μm in the SF and BF, respectively. Noting that the observed droplet sizes of dispersed oils range from 50 to 400 μm (hence most of it is less than 250 μm), one concludes that the mixing in the SF (even at 200 rpm) is not representative of the vigorous mixing occurring at sea.  相似文献   
2.
Cui  Fangda  Zhao  Lin  Daskiran  Cosan  King  Thomas  Lee  Kenneth  Katz  Joseph  Boufadel  Michel C. 《Environmental Fluid Mechanics》2020,20(6):1553-1578
Environmental Fluid Mechanics - Oil dispersion under a deep-water plunging breaker of height 0.15 m was studied by coupling the Lagrangian particle tracking code (NEMO3D) with the...  相似文献   
3.
ABSTRACT: Twenty storm events were used to select design values of the HEC1 loss parameters STRTL and CNSTL in order to route the probable maximum flood, PMF, through the Englewood watershed, Ohio. The parameter STRTL represents the initial volume of water lost due to interception and incomplete saturation of the soil prior to the storm. The parameter CNSTL represents a continuous loss rate and depends only on the watershed. When optimized from each storm event, STRTL varied between 0.0 and 3.4 inches with an average of 1.0 inch; CNSTL varied between 0.02 and 0.26 inch/hour, and it followed a normal probability distribution with a mean of about 0.1 inch/hour. The absence of correlation between optimum CNSTL values and each of total rainfall, total loss, and runoff duration supported the selection of the mean CNSTL as a design value. PMF routing through the Englewood watershed revealed that the PMF at the outlet is not sensitive to STRTL, but highly affected by CNSTL variations. The insensitivity to STRTL was due to the presence of a dam at the outlet of the watershed that caused the buildup of water in the watershed, thereby masking the storage effect of STRTL. The peak PMF increased by about 27 percent when the design CNSTL was decreased to 0.05 inch! hour, and decreased by about 18 percent when the design CNSTL was increased to 0.15 inch/hour.  相似文献   
4.
ABSTRACT: Unit hydrograph ordinates are often estimated by deconvoluting excess rainfall pulses and corresponding direct runoff. The resulting ordinates are given at discrete times spaced evenly at intervals equal to the duration of the rainfall pulse. If the new duration is not a multiple of the parent duration, hydrograph interpolation is required. Linear interpolation, piece-wise nonlinear interpolation and graphical smoothing have been used. These interpolation schemes are expedient but they lack theoretical basis and can lead to undesirable results. Interpolation can be avoided if the instantaneous unit hydrograph (IUH) for the watershed is known. Here two issues connected with the classic Nash IUH are examined: (1) how should the Nash parameters be estimated? and (2) under what conditions is the resulting hydrograph able to reasonably represent watershed response? In the first case, nonlinear constrained optimization provides better estimates of the IUH parameters than does the method of moments. In the second case, the Nash IUH gives good results on watersheds with mild shape unit hydrographs, but performs poorly on watersheds having sharply peaked unit hydrographs. Overall, in comparison to empirical interpolation alternatives, the Nash IUH offers a theoretically sound and practical approach to estimate unit hydrographs for a wide variety of watersheds.  相似文献   
5.
Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 Ls(-1) and 81 Ls(-1), average stream width was 5.5m and average stream depth was 0.2m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 1.0m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross-section. We show that the unsupported assumption of complete mixing may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mixing and one-dimensional modeling must be checked against actual field conditions, even in small streams.  相似文献   
6.
● An approach for assessing the transport of benzene on the beach was proposed. ● The behavior of benzene in the subsurface of the beach was impacted by tide. ● Tidal amplitude influenced the travel speed and the benzene biodegradation. ● Hydraulic conductivity had the impact on plume residence time and biodegradation. ● Plume dispersed and concentration decreased due to high longitudinal dispersivity. The release and transport of benzene in coastal aquifers were investigated in the present study. Numerical simulations were implemented using the SEAM3D, coupled with GMS, to study the behavior of benzene in the subsurface of tidally influenced beaches. The transport and fate of the benzene plume were simulated, considering advection, dispersion, sorption, biodegradation, and dissolution on the beach. Different tide amplitudes, aquifer characteristics, and pollutant release locations were studied. It was found that the tide amplitude, hydraulic conductivity, and longitudinal dispersivity were the primary factors affecting the fate and transport of benzene. The tidal amplitude influenced the transport speed and percentage of biodegradation of benzene plume in the beach. A high tidal range reduced the spreading area and enhanced the rate of benzene biodegradation. Hydraulic conductivity had an impact on plume residence time and the percentage of contaminant biodegradation. Lower hydraulic conductivity induced longer residence time in each beach portion and a higher percentage of biodegradation on the beach. The plume dispersed and the concentration decreased due to high longitudinal dispersivity. The results can be used to support future risk assessment and management for the shorelines impacted by spill and leaking accidents. Modeling the heterogeneous beach aquifer subjected to tides can also be further explored in the future study.  相似文献   
7.
Oil from the 1989 Exxon Valdez oil spill persists in some of the Prince William Sound (Alaska) beaches and continues to be a potential threat to the fauna. This paper reports a field investigation during the summer of 2008 of groundwater flow and solute transport in a tidal gravel beach in Smith Island, Prince William Sound. The beach contains oil on one side, the left side (facing landward). Field measurements of water table, salinity, and tracer (lithium) concentration were obtained for an approximate duration of 64 h for two transects, the oiled transect and a clean transect (the right transect). It was found that the hydraulic conductivity and the fresh groundwater recharge into the two transects were similar. It was also found that the beach slope of the mid to high tidal zone along the oiled (left) transect was ~7.4% which is considerably smaller than that of the clean (right) transect (~11.8%). This suggests a higher flushing/replenishing of the right transect with nutrients and/or oxygen, which would have enhanced biodegradation of oil on the right transect if that oil was not washed by waves. We also found that the degree of oiling at each location was inversely dependent on the armoring of the beach surface with clasts and boulders. The applied tracer concentration at the left transect was less than 2% of the source or close to the background level at all locations except a seaward well closest to the applied location, indicating that the tracer applied was diluted or washed out from the beach during the application. Thus, in situations where oil biodegradation is limited by the availability of nutrients and/or dissolved oxygen, applying the chemicals on the beach surface would most likely not enhance oil biodegradation as the applied chemicals would be greatly diluted prior to reaching the oil. Thus, deep injection of nutrients and/or dissolved oxygen is probably the only option for enhancing oil biodegradation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号