首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   1篇
污染及防治   3篇
评价与监测   1篇
  2011年   1篇
  2009年   1篇
  2006年   2篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 10 毫秒
1
1.
2.
This paper summarises the results of the EU funded MEAD project, an interdisciplinary study of the effects of atmospheric nitrogen deposition on the Kattegat Sea between Denmark and Sweden. The study considers emissions of reactive nitrogen gases, their transport, transformations, deposition and effects on algal growth together with management options to reduce these effects. We conclude that atmospheric deposition is an important source of fixed nitrogen to the region particularly in summer, when nitrogen is the limiting nutrient for phytoplankton growth, and contributes to the overall eutrophication pressures in this region. However, we also conclude that it is unlikely that atmospheric deposition can, on its own, induce algal blooms in this region. A reduction of atmospheric nitrogen loads to this region will require strategies to reduce emissions of ammonia from local agriculture and Europe wide reductions in nitrous oxide emissions.  相似文献   
3.
As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO2 over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO2 sampling stations, built at University of Copenhagen, for 14C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO2 due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO2. During the project period (1998–2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO2, as expected, is largest (up to 3.7±0.4% fossil CO2) at the Danish location closest to the European emissions areas and much weaker (up to ∼1.5±0.6% fossil CO2) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background 14CO2 activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO2 over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO2.  相似文献   
4.
The effect of atmospheric nitrogen deposition on the species richness of acid grasslands was investigated by combining data from a large Danish monitoring program with a large European data set, where a significant non-linear negative effect of nitrogen deposition had been demonstrated (Stevens et al., 2010). The nitrogen deposition range in Denmark is relatively small and when only considering the Danish data a non-significant decrease in the species richness with nitrogen deposition was observed. However, when both data sets were combined, then the conclusion of the European survey was further corroborated by the results of the Danish monitoring. Furthermore, by combining the two data sets a more comprehensive picture of the threats to the biodiversity of acid grasslands emerge; i.e., species richness in remnant patches of acid grassland in intensively cultivated agricultural landscapes is under influence not only from nitrogen deposition, but also from current and historical land use.  相似文献   
5.
We present a detailed tree species inventory covering Europe, parts of Africa and parts of Asia. The inventory contains 39 groups of species that are important for biogenic VOCs or pollen emission calculations. For example: oak (Quercus), poplar (Populus), pines (Pinus), spruce (Picea), birch (Betula) and alder (Alnus). The inventory is based on national forest inventories and national statistics and gives tree species distribution in percentage within broadleaved as well as conifer forests. The inventory includes data from 799 regions and is redistributed into the 50 km × 50 km EMEP grid. The inventory is therefore prepared for easy implementation into atmospheric transport models by providing an extension to already applied land use data such as the Corine Land Cover (CLC2000) or Global Land Cover (GLC2000). The gridded version of the data set will be available on the webpage http://www.dmu.dk/International/Air/Models/Background/Trees/.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号