首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
废物处理   4篇
环保管理   8篇
综合类   1篇
污染及防治   2篇
评价与监测   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
2.
The High Plains aquifer (HPA) is the primary water source for agricultural irrigation in the US Great Plains. The water levels in many locations of the aquifer have declined steadily over the past several decades because the rate of water withdrawals exceeds recharge, which has been a serious concern to the water resources management in the region. We evaluated temporal trends and variations in agricultural water use and hydroclimatic variables including precipitation, air temperature, reference evapotranspiration, runoff, groundwater level, and terrestrial water storage across the HPA region for different periods from 1985 to 2020 at the grid, county, or region scale. The results showed that water withdrawals decreased from 21.3 km3/year in 1985 to 18.2 km3/year in 2015, while irrigated croplands increased from 71,928 km2 in 1985 to 78,464 km2 in 2015 in the entire HPA. The hydroclimatic time-series showed wetting trends in most of the northern HPA, but drying and warming trends in the southern region from 1985 to 2020. The groundwater level time-series indicated flat trends in the north, but significant declining in the central and southern HPA. Trends in irrigation water withdrawals and irrigation area across the HPA were controlled by the advancement of irrigation systems and technologies and the management of sustainable water use, but also were affected by dynamical changes in the hydroclimatic conditions.  相似文献   
3.
4.
While there are currently a number of irrigated land datasets available for the western United States (U.S.), there is uncertainty regarding in how they relate to each other. To help understand the characteristics of available irrigated datasets, we compared (1) the Cropland Data Layer (CDL), (2) Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset (IAD), (3) Digitized Irrigated Land (DIL), and (4) Consumptive Use for Irrigation (CUI) data in Arizona and Colorado, U.S. These datasets were derived from multiple sources at various spatial resolutions and temporal scales. We found spatial and temporal trends among all of them. The datasets showed decreases in irrigated land area in Arizona during the 2000–2010 time period. The change ranges and ratios were similar in all Arizona datasets. Irrigated land in Colorado decreased in DIL and CUI but increased in IAD and CDL. The agreement within the same type of dataset during different time periods was from 60% to 80% (R2 from 0.35 to 0.72) in Arizona and from 50% to 80% (R2 from 0.23 to 0.68) in Colorado. DIL had the highest agreement (80%) in both states. The agreement among different datasets acquired at approximately the same time frame ranged from 51% to 63% (R2 from 0.14 to 0.31) in Arizona and from 47% to 69% (R2 from 0.32 to 0.40) in Colorado. The results from this study support a greater understanding of the multiresolution and multitemporal nature of these datasets for various applications.  相似文献   
5.
Environmental Science and Pollution Research - The K?z?l?rmak River is the longest river (1.355 km) in Turkey and flows into the Black Sea. Main pressures in the basin are waste...  相似文献   
6.
This study aims to obtain a reliable inventory of the emission rates of the principal air pollutants including PM, SO2, NOx) and CO in Kocaeli, Turkey. In the first stage, the pollutant sources classified as point, area and line sources are determined in the area. Then the annual emission rates of the pollutants released from these sources are estimated by the emission factors given by USEPA and CORINAIR. Results show that the annual emission rates for PM, SO2, NOx) and CO are 2195 tons, 5342 tons, 14632 tons and 23095 tons, respectively. On the other hand, the pollutant group with the highest contribution to total emission rate is determined as the point sources for NOx, which is responsible for 73% of total NOx emission, while it is the area sources for PM, SO2 and CO with the contribution percentages of 75, 76 and 69, respectively.  相似文献   
7.
The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large‐scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETref maps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.  相似文献   
8.
Reducing the impact of drought and famine remains a challenge in sub‐Saharan Africa despite ongoing drought relief assistance in recent decades. This is because drought and famine are primarily addressed through a crisis management approach when a disaster occurs, rather than stressing preparedness and risk management. Moreover, drought planning and food security efforts have been hampered by a lack of integrated drought monitoring tools, inadequate early warning systems (EWS), and insufficient information flow within and between levels of government in many sub‐Saharan countries. The integration of existing drought monitoring tools for sub‐Saharan Africa is essential for improving food security systems to reduce the impacts of drought and famine on society in this region. A proactive approach emphasizing integration requires the collective use of multiple tools, which can be used to detect trends in food availability and provide early indicators at local, national, and regional scales on the likely occurrence of food crises. In addition, improving the ability to monitor and disseminate critical drought‐related information using available modern technologies (e.g., satellites, computers, and modern communication techniques) may help trigger timely and appropriate preventive responses and, ultimately, contribute to food security and sustainable development in sub‐Saharan Africa.  相似文献   
9.
This study presents new data‐driven, annual estimates of the division of precipitation into the recharge, quick‐flow runoff, and evapotranspiration (ET) water budget components for 2000‐2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick‐flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick‐flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick‐flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first‐order estimates of these quantities across the CONUS, even where field measurements are sparse.  相似文献   
10.
The increasing availability of multi‐scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model‐assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the “hot” and “cold” reference conditions. The SSEBop model was used for computing ET for 12 years (2000‐2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000‐2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号