首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
废物处理   2篇
综合类   1篇
基础理论   2篇
评价与监测   1篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2011年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Environmental Geochemistry and Health - Human health risk assessment at hydrocarbon-contaminated sites requires a critical evaluation of the exposure pathways of volatile organic compounds...  相似文献   
2.
Trials were conducted to optimize the parameters of a heavy‐particle concentrator (HPC) for the remediation of soil stockpiles contaminated by metallic lead at the Mount Stuart training area in Townsville, Queensland, Australia. A range of treatment methods, including orbital screen, HPC, and a combination of orbital screen and HPC were evaluated. The treatment efficiency, as well as reductions in Pb and Australian Standard Teaching Procedure values, was ranked: Orbital screen + HPC < HPC < 2nd run through HPC. The combination of orbital screening, HPC, and phosphate‐aided immobilization completely remediated the stockpiled material by reducing total lead to below the Australian National Environmental Protection Measure Health Investigation Level for Soil Contaminant (Recreational; < 600 milligrams lead per kilogram). The optimized parameters of HPC at 4 tonnes per hour of the < 40 millimeter (mm) orbital screen feed fraction were: inclination angle 4°, trommel speed 1,860 revolutions per minute (rpm), HPC belt speed 3.5 rpm, material distribution chute extension 100 mm and water flow 480 liters per minute.  相似文献   
3.
The changes in the soluble and insoluble protein contents, glucose and activity levels of glucose-6-phosphate dehydrogenase were studied in hepatopancreas, muscle and gill tissues of penaeid prawn, Metapenaeus monoceros, following its exposure to sublethal concentrations of phosphamidon and methylparathion, organophosphorus insecticides. Both soluble and insoluble protein fractions increased, whereas tissue glucose content decreased. Oxidative metabolism and glucose-6-phosphate dehydrogenase activity levels was significantly elevated. the results obtained in the present study throws light on the enhanced protein synthetic potentiality and detoxification of insecticide molecules are the adoptive measures to counteract the insecticide toxicity.  相似文献   
4.
An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two different cases. The developed methodology is useful in coming up with an optimal number of monitoring wells within the budgetary limitations. The methodology also addresses the issue of redundancy, as it refines the existing monitoring network without losing much information of the network. The concept of uncertainty-based network design model is useful in various stages of a potentially contaminated site management such as delineation of contaminant plume and long-term monitoring of the remediation process.  相似文献   
5.
Since the early 1980’s there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.  相似文献   
6.
The process of designing a remedy for contaminated groundwater historically has not commonly included climate-future, hydrologic, and biogeochemical aquifer characteristics. From experience, the remedy design process also has not consistently nor directly integrated or projected future hydrologic and biogeochemical effects of the human-induced or developed environment—aka the anthropogenic influence—on potential remedy performance. The apparent practice of (1) not regularly assessing anthro-influenced hydrological (termed here as anthrohydrology) or biogeochemical characteristics (collectively hydrobiogeochemistry) of a site and (2) rarely accounting for future climatic shifts as design factors in remedy design may be due, in part, to the general practice-level view that groundwater remediation systems (whether in situ or ex situ) have seldom been anticipated to last more than a few years (or one or two decades at the most). Second, methods to reliably and quantitatively estimate site-specific, climate-future shifts in groundwater conditions using global and/or regional climate models and the resultant impacts on contaminant plume characteristics have not been readily available. The authors here suggest that while the concept of remedy design resilience and durability, within an envelope of climate change and anthropogenic influence, has been discussed in some technical circles as a component of “sustainable remediation,” we have found that direct application of these technical concepts in quantifiable terms remains rare. By incorporating the potential influence of future hydrobiogeochemical scenarios into remedy design, however, the design process could account for reasonable climate-induced influence on the groundwater system for a given site. These scenarios could then be applied within the remedy selection process to assess performance durability under potentially changing hydrologic, biological, and chemical conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号