首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
安全科学   18篇
综合类   6篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有24条查询结果,搜索用时 276 毫秒
1.
基于GPS与GSM的交通事故自动呼救系统的设计   总被引:2,自引:0,他引:2  
结合GPS的定位功能和GSM的远程无线通讯功能,提出一种以提高交通安全、减少人员伤亡为目的的车辆交通事故自动呼救系统的构建方案,该系统会伴随安全气囊的启动而启动,也可手动启动。车载模块将安全气囊点火信号送入微处理器,通过串行接口驱动无线数据传输模块,经GSM网络将GPS的定位信息发送到监控中心,并可建立车载模块与监控中心之间的语音通讯,给出车载模块硬件电路实现、软件设计以及控制中心的设计方案,并对系统的关键技术进行了说明。  相似文献   
2.
基于气囊缓冲的某火箭炮着陆冲击分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目的减小火箭弹着陆冲击加速度。方法基于LS-DYNA瞬态动力学分析软件和冲击动力学理论,采用有限元软件HYPERMESH建立火箭炮-气囊系统有限元模型,采用显式动力学方法对火箭炮-气囊系统的着陆冲击缓冲过程进行仿真。分析火箭炮在正常着陆工况下,火箭弹的着陆冲击响应,得出空投装备速度、加速度变化曲线,以及气囊的体积、压力曲线。结果在正常着陆工况下,火箭弹横向加速度的最大值为122 m/s2,小于安全的横向加速度;火箭弹纵向加速度的最大值为48.3 m/s2,小于安全的纵向加速度;火箭弹的最大轴向力为2640 N,小于安全闭锁力。结论在火箭炮着陆冲击过程中,气囊缓冲装置吸收了大部分冲击能量,起到了良好的缓冲作用,火箭弹的冲击加速度、闭锁力均在安全范围内。采用显式动力学方法对火箭炮的着陆冲击过程进行分析是可行的。  相似文献   
3.
为解决高瓦斯工作面隅角封堵工人劳动强度大、效率低,封堵效果不佳易造成隅角瓦斯浓度超限等安全问题,研发设计了矿用阻燃内外胆组合结构的轻型柔性隅角封堵气囊,并相应提出了单体液压支柱配合轻型柔性气囊的隅角封堵新方法。通过实验室测试实验和现场工业性试验表明:选用PVC材料和双抗涂覆布材料的气囊质量小、轻便实用,大幅降低了工人的劳动强度,提高了工作效率,减小了传统封堵方式编织袋装碎煤造成的遗煤浪费;该气囊可适应大变形(变形率可达42.5%)、耐冲击(2×104J的冲击能量不破坏),抗撕扯能力强,且具有阻燃特性,重复使用率高,大大节约了隅角封堵的成本;使用气囊封堵后,采空区内瓦斯浓度显著增大,说明气囊封堵的密闭性增加,安全封堵效果十分明显。  相似文献   
4.
Abstract

Objective: The focus of this study is side impact. Though occupant injury assessment and protection in nearside impacts has received considerable attention and safety standards have been promulgated, field studies show that a majority of far-side occupant injuries are focused on the head and thorax. The 50th percentile male Test Device for Human Occupant Restraint (THOR) has been used in oblique and lateral far-side impact sled tests, and regional body accelerations and forces and moments recorded by load cells have been previously reported. The aim of this study is to evaluate the chestband-based deflection responses from these tests.

Methods: The 3-point belt–restrained 50th percentile male THOR dummy was seated upright in a buck consisting of a rigid flat seat, simulated center console, dashboard, far-side side door structure, and armrest. It was designed to conduct pure lateral and oblique impacts. The center console, dashboard, simulated door structure, and armrest were covered with energy-absorbing materials. A center-mounted airbag was mounted to the right side of the seat. Two 59-gage chestbands were routed on the circumference of the thorax, with the upper and lower chestbands at the level of the third and sixth ribs, respectively, following the rib geometry. Oblique and pure lateral far-side impact tests with and without airbags were conducted at 8.3 m/s. Maximum chest deflections were computed by processing temporal contours using custom software and 3 methods: Procedures paralleling human cadaver studies, using the actual anchor point location and actual alignment of the InfraRed Telescoping Rods for the Assessment of Chest Compression (IR-TRACC) in the dummy on each aspect—that is, right or left,—and using the same anchor location of the internal sensor but determining the location of the peak chest deflection on the contour confined to the aspect of the sensor; these were termed the SD, ID, and TD metrics, respectively.

Results: All deformation contours at the upper and lower thorax levels and associated peak deflections are given for all tests. Briefly, the ID metrics were the lowest in magnitude for both pure lateral and oblique modes, regardless of the presence or absence of an airbag. This was followed by the TD metric, and the SD metric produced the greatest deflections.

Conclusion: The chestbands provide a unique opportunity to compute peak deflections that parallel current IR-TRACC-type deflections and allow computation of peak deflections independent of the initial point of attachment to the rib. The differing locations of the peak deflection vectors along the rib contours for different test conditions suggest that a priori attachment is less effective. Further, varying magnitudes of the differences between ID and TD metrics underscore the difficulty in extrapolating ID outputs under different conditions: Pure lateral versus oblique, airbag presence, and thoracic levels. Deflection measurements should, therefore, not be limited to an instrument that can only track from a fixed point. For improved predictions, these results suggest the need to investigate alternative techniques, such as optical methods to improve chest deflection measurements for far-side occupant injury assessment and mitigation.  相似文献   
5.
Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized. This study uses computational models of the human body and KABs to explore how KAB design may influence the impact response of the occupant's lower extremities.

Methods: The analysis was conducted using a 50th percentile male occupant human body model with deployed KABs in a simplified vehicle interior. The 2 common KAB design types, bottom-deploy KAB (BKAB) and rear-deploy KAB (RKAB), were both included. A state-of-the-art airbag modeling technique, the corpuscular particle method, was adopted to represent the deployment dynamics of the unfolding airbags. Validation of the environment model was performed based on previously reported test results. The kinematic responses of the occupant lower extremities were compared under both KAB designs, 2 seating configurations (in-position and out-of-position), and 3 loading conditions (static, frontal, and oblique impacts). A linear statistical model was used to assess factor significance considering the impact responses of the occupant lower extremities.

Results: The presence of a KAB had a significant influence on the lower extremity kinematics compared to no KAB (P <.05) by providing early restraint and distributing contact force on the legs during airbag deployment. For in-position occupants, the KAB generally tended to decrease tibia loadings. The RKAB led to greater lateral motion of the legs compared to the BKAB, resulting in higher lateral displacement at the knee joint and abduction angle change (51.2 ± 21.7 mm and 15° ± 6.0°) over the dynamic loading conditions. Change in the seating position led to a significant difference in occupant kinematic and kinetic parameters (P <.05). For the out-of-position (forward-seated) occupant, the earlier contact between the lower extremity and the deploying KAB resulted in 28.4° ± 5.8° greater abduction, regardless of crash scenarios. Both KAB types reduced the axial force in the femur relative to no KAB. Overall, the out-of-position occupant sustained a raised axial force and bending moment of the tibia by 0.8 ± 0.2 kN and 21.1 ± 8.7 Nm regardless of restraint use.

Conclusions: The current study provided a preliminary computational examination on KAB designs based on a limited set of configurations in an idealized vehicle interior. Results suggested that the BKAB tended to provide more coverage and less leg abduction compared to the RKAB in oblique impact and/or the selected out-of-position scenario. An out-of-position occupant was associated with larger abduction and lower extremity loads over all occupant configurations. Further investigations are recommended to obtain a full understanding of the KAB performance in a more realistic vehicle environment.  相似文献   

6.
着陆气囊的缓冲机理与技术分析   总被引:4,自引:0,他引:4  
黄刚  李良春  林健 《装备环境工程》2011,8(4):86-89,108
对着陆气囊缓冲的作用机理和缓冲技术进行了对比分析,并且按照对着陆气囊的排气控制的形式、气囊集气方式以及2种方式相结合的形式对着陆缓冲气囊进行了分类;对当前国内外主要的着陆气囊进行了总结,并对其相应的着陆缓冲技术进行了分析;对着陆气囊缓冲技术的发展现状进行了分析总结,并提出了着陆气囊缓冲技术的发展趋势.  相似文献   
7.
目的 研究冲击载荷作用下排气孔面积及初始缓冲时刻对某型气囊缓冲性能的影响.方法 采用MIMICS软件,并结合LS-Prepost软件,建立髋骨-气囊-地面有限元模型,利用LS-DYNA软件对气囊的缓冲过程进行仿真计算,得到缓冲过程中该模型的动力学响应结果.通过分析髋骨模型受力及气囊状态的变化,探讨排气孔面积及初始接触时...  相似文献   
8.
大中型救生气囊广泛运用于航空、航海救生等领域,它要求启动释放装置后能在很短的时间内将气囊充至规定形状,以满足救生功能,同时又要具有很高的可靠性与安全性,本文主要介绍一种用于大中型救生气囊的快速气体释放阀,并阐述其工作原理及应用。  相似文献   
9.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   

10.
Objective: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data.

Method: We focus exclusively on vehicle–vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared.

Results: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80–1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76–1.65).

Conclusion: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号