首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
综合类   4篇
基础理论   2篇
污染及防治   12篇
评价与监测   1篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有20条查询结果,搜索用时 312 毫秒
1.
Li W  Ma Y  Li L  Qin DM  Wu YJ 《Chemosphere》2011,82(6):829-833
The residual levels and dissipation rate of trichlorfon, and its degradation product, dichlorvos, in cabbage crops and the soil in which these were grown, were determined by gas chromatography at two geographically distant experimental sites, one in Kunming and one in Beijing, China. Trichlorfon was applied at two dosages (900 g ai ha−1 and 1350 g ai ha−1). Maximum final residues of trichlorfon in soil and cabbage were 1.23 mg kg−1 and 1.81 mg kg−1 respectively at Kunming, and 0.35 mg kg−1 and 0.70 mg kg−1 respectively at Beijing. However, the final residues of dichlorvos in both cabbage and soil was only 0.04 mg kg−1 at Kunming, and only 0.03 mg kg−1, or “not detectable”, at Beijing. The mean half-life of trichlorfon in cabbage was 1.80 d with a dissipation rate of 90% over 5 d, while that in soil was 3.05 d with a dissipation rate of 90% over 14 d at one experimental site. The dissipation rates of trichlorfon and its degradation product dichlorvos at the two experimental sites were different, suggesting that degradation of these pesticides was affected by local soil characteristics and climate. When applied at both the recommended dosage and at 1.5 times this, no detectable residues of either trichlorfon or dichlorvos were found in soil or cabbage at harvest. Although trichlorfon can easily degrade into dichlorvos, which is highly toxic to humans and other animals, the observed low residual levels of dichlorvos suggest that trichlorfon is safe when applied at the recommended dosage.  相似文献   
2.
Owing to reported phytotoxicity of some sulfonylurea class of herbicides in number of sensitive crops and higher persistence in soil, present study was conducted to isolate and identify pyrazosulfuron-ethyl degrading fungi from soil of rice field. Penicillium chrysogenum and Aspergillus niger, were isolated and identified from rhizospere soil of rice field, as potent pyrazosulfuron-ethyl degrading fungi. Degradation of pyrazosulfuron-ethyl by P. chrysogenum and A. niger, yielded transformation products/metabolites which were identified and characterized by LC/MS/MS. The rate of dissipation of pyrazosulfuron-ethyl was found higher in soil of rice field and soil inoculated with P. chrysogenum. This showed important route of degradation of pyrazosulfuron-ethyl by microbes apart from chemical degradation.  相似文献   
3.
Lindane removal by pure and mixed cultures of immobilized actinobacteria   总被引:1,自引:0,他引:1  
Stereoselective dissipation of epoxiconazole had been studied in grape and soil during plant growing under field conditions in this paper. A sensitive and rapid chiral method was developed and validated for the determination of epoxiconazole stereoisomers in grape and soil based on liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). Phenomenex Lux Cellulose-1 column was used for enantioseparation with a mixture of acetonitrile/water (90/10, v/v) as mobile phase at flow rate of 0.3 mL min−1. Fortified recoveries in grape and soil samples ranged from 76.0% to 91.9% and relative standard deviations were less than 11.4% with fortified levels of 0.025-1.0 mg kg−1. The limits of detection and quantification were 0.005 mg kg−1 and 0.025 mg kg−1, respectively, with linear calibration curves extending up to 5.0 mg kg−1. The field experimental results showed that dissipations of epoxiconazole stereoisomers in grape followed first-order kinetics (R2 > 0.92) and stereoselectivity occurred in 2 h after spraying. The (−)-stereoisomer with half-life of 9.3 d degraded faster than (+)-stereoisomer with that of 13.2 d, and resulted in relative enrichment of (+)-stereoisomer. However, the stereoisomeric dissipations in soil were triphasic (“increase-decrease-steady”) with lower dissipation rates, and also occurred with preferential degradation of (−)-stereoisomer under field condition. The results for stereoselective dissipations can be applied for food and environmental assessments of chiral pesticides.  相似文献   
4.
Background, aim, and scope  Large-scale deforestation is occurring in subarctic North America following clearing by salvage logging or insect attack. Numerous shrubs, herbs, and deciduous tree species tend to dominate areas on which stands of white spruce have grown. In the absence of economically advantageous mechanical methods, several herbicides have value in efforts to reforest by planting white spruce. Glyphosate, imazapyr, triclopyr, and hexazinone are all capable of selectively removing many competing species, but there is concern about whether they would degrade naturally or persist owing to the frigid climate. Materials and methods  We established test plots with all four herbicides in upland and river bottom sites at 65°N and 58°N latitudes. The northern site has extremely cold winters, with soils that freeze to a depth of 1–2 m, and precipitation of 275 mm/year. The southern site has heavy rain and snowfall, amounting to 2,250 mm/year evenly distributed. Soil seldom freezes deeply. On each test plot, one of the four herbicides was applied at twice the normal operational use rate to facilitate detection. They were applied at the normal timing, with hexazinone, imazapyr, and triclopyr applied in June and glyphosate applied in fall. Soils were sampled immediately after treatment and those samples used as references for dissipation data gathered over the next 11–14 months from soil 0- to 15- and 15- to 45-cm depths. Results  Dissipation rates did not follow first-order rates because freezing conditions slowed most microbial activity. All products dissipated to close to or below detection limits within the time of the study. Dissipation from vegetation was substantially more rapid and depended on the nature of the plants treated as well as the product used. While soil residues dissipated more slowly than in temperate regions, they did display consistent dissipation patterns during above-freezing conditions and also the influence of microbial activity. Mobility was very limited with all products but hexazinone. Discussion  These products dissipate during summer in high latitudes much as they would in temperate climates. Winter changes are small, but are not unlike some changes reported elsewhere under freezing conditions. Unlike many other studies, soil water did not influence dissipation heavily, but the high latitude and semi-arid climate also did not create severely droughty soils. Residues in plants were much higher than those in soils, but denatured the vegetation quickly, leading to unsuitability for forage in any case. Conclusions  Low toxicity of these products and their metabolites combined with consistent dissipation and low mobility suggest that toxic hazard of their use at high latitudes need not be a matter of serious concern to humans, terrestrial wildlife, or aquatic systems. They are safe for use in management and rehabilitation of boreal forests when used properly. Recommendations and perspectives  Dissipation at rates approaching those in warmer climates offer a hypothesis that microflora native to high latitudes may be adapted to destruction of such molecules at lower temperatures than may be indicated by experiments with microflora adapted to warmer climates. Residues pose no observable risk to wildlife or humans in the area of use when products are applied properly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available for authorized users.  相似文献   
5.
Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems.  相似文献   
6.
Water temperature not only affects the solubility of gas in water but can also be an important factor in the dissipation process of supersaturated total dissolved gas (TDG). The quantitative relationship between the dissipation process and temperature has not been previously described. This relationship affects the accurate evaluation of the dissipation process and the subsequent biological effects. This article experimentally investigates the impact of temperature on supersaturated TDG dissipation in static and turbulent conditions. The results show that the supersaturated TDG dissipation coefficient increases with the temperature and turbulence intensity. The quantitative relationship was verified by straight flume experiments. This study enhances our understanding of the dissipation of supersaturated TDG. Furthermore, it provides a scientific foundation for the accurate prediction of the dissipation process of supersaturated TDG in the downstream area and the negative imp)acts of high dam projects on aquatic ecosystems.  相似文献   
7.
Dissipation of simultaneously applied insecticides alpha-cypermethrin and lambda-cyhalothrin was studied in a minor crop, aboveground part of white mustard (Sinapis alba L.). A validated gas chromatographic method (GC-ECD/NPD) was used to determine insecticide residues. Analytical performances were very satisfactory, with expanded uncertainties not higher than 14% (coverage factor k = 2, confidence level 95%). Dissipation of alpha-cypermethrin and lambda-cyhalothrin in white mustard followed first-order kinetics (R2 between 0.953 and 0.995), with half-lives of 3.1–4.6 and 2.9–3.7 days respectively. Based on the results of this two-year study and the relevant residue regulation, alpha-cypermethrin and lambda-cyhalothrin treatments can be considered safe for crop protection, feeding animals and the environment.  相似文献   
8.
The pesticide atrazine,its degradation products,and 2,6-dichlorobenzamide(BAM) are persistent in groundwater environment.We studied whether their dissipation can be enhanced with a mixture of a complex carbon source and zero-valent iron(ZVI) called EHC.The application rates were 1.0% and 2.0%(by weight) in subsurface sediments slurries(atrazine 30 mg/L),and 2.0% in 1.5 m pilot-scale sediment columns with groundwater flowing through(atrazine 0.08,desethylatrazine DEA 0.03,BAM 0.02 μg/L).In the slurries under aerobic conditions,atrazine of 0.88 ± 0.14 mg/g of EHC was dissipated chemically,as concentrations did not differ significantly between the slurries and their sterilized controls.No degradation occurred in the slurries under anaerobic conditions.In the pilot-scale columns under water-saturated conditions,atrazine,DEA and BAM were not detected in effluents during 33,64 and 64 days from the beginning of the water flow through EHC columns,respectively,but thereafter traces of compounds could be detected.No atrazine or degradation products(BAM,DEA,deisopropylatrazine,desethyldeisopropylatrazine) could be extracted from the column sediments at the end of the experiment.As a result,the sum of dissipated pesticides was about7.6 μg/g of EHC in columns under water-saturated conditions,and 0.88 mg/g of EHC in slurries under aerobic conditions.EHC can be used to enhance the dissipation of studied pesticides in small quantities,preferentially under aerobic conditions.  相似文献   
9.
In a field study carried out at three different locations, the dissipation of spiromesifen on cotton and chili was studied and its DT50, and DT99 were estimated at each location. Spiromesifen was sprayed on chili at 96 and 192 g a.i. ha−1 and cotton at 120 and 240 g a.i. ha−1. Samples of chili fruits were drawn at 0, 1, 3, 5, 7, 10, 15, 21, 30 days after treatment and that of cotton seed and lint at first picking and harvest. Soil samples were drawn 30 days after treatment from 0 to 15 and 15 to 30 cm layer. Quantification of residues was done on GC–MS in Selected Ion Monitoring (SIM) mode in mass range 271–274 m/z. The LOQ of this method was found 0.033 μg g−1, LOD being 0.01 μg g−1. The DT50 of spiromesifen when applied at recommended doses in chili fruits was found to be 2.18–2.40 days. Ninety-nine percent degradation was found to occur within 14.5–16.3 days after application. Residues of spiromesifen were not detected in cotton seed and lint samples at the first picking. In soil, no residues of spiromesifen were detectable 15 days after treatment.  相似文献   
10.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号